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SUMMARY

For the purpose of carrying out a system reliability analysis of piping
systems contained in nuclear power plants subjected to seismic action, a sto-
chastic analysis procedure is presented which, starting from a design response
spectrum, analyses the main structure and then the multi-supported piping sy-
stem. Maximum local response and floor response spectra are presented as inter
mediate steps of the procedure.

INTRODUCTION

Special structures whose functionality is essential in some productive
processes may require a system reliability analysis. To this purpose, once de
fined the critical elements and the joint distribution function of the load ef
fects, the reliability can be evaluated as the probability that load effects
are contained in the safe domain. In case of seismic action, time dependent
load effects must be accounted for, and system reliability analysis involves
solution of first up—crossing problems.

In the field of nuclear power plants, seismic action is of permanent con
cern, and a reliability analysis is frequently required for the equipmentscon
tained in the main structures. When the safety verification of an isolated i-
tem is required, the floor response spectrum technique is adequate. When the
reliability analysis regards a piping system attached to several points a-
long the structure, not only the motions of all supports but their correlation
also must be defined. Furthemore non synchronous excitation must also be ta-
ken into account.

Procedures for the dynamic analysis of multi-supported structures are
well established 13,51, and system reliability analysis can be dealt with ac-
cording to [2,7]. Since present design practice in nuclear power plants is
not advanced enough in the treatment of these problems (see introduction in
| 5]) it seems appropriate clarify in a unified manner the complete procedure
for the seismic system reliability analysis of a multi- supported piping. Im-
portance response quantities, such as the probability of maximum local respon
se, and probabilistic floor response spectra are presented at intermediate sta
ges of the procedure.
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In the present study, the seismic action is modelled by a Gaussian ergo-
dic stochastic process defined by its power density, and the structural beha-
vior is assumed as linear; the response process, completely defined by its co
variance matrix, is then used to perform the reliability analysis.

1. GROUND MOTION POWER SPECTRUM

In usual practice for the design of nuclear plant structures, the seismic
input is given in the form of a normalized elastic response spectrum; in apro
babilistic context, the power density function of the underlying stochastic
process (assumed as gaussian ergodic) is required.

The problem of deriving the power spectral density function from the re-
sponse spectrum has been treated from some time |4 [[6 I, and a satisfactory
solution is reported in |6 |.

The direct problem is the following: given a gaussian ergodic stochastic
process, the response spectrum Ry(w) can be derived from the power spectral
density function S,(w) by multiplying the response standard deviation by a
peak factor r. Following the procedure pointed out in \6 l the peak factor
will be evaluated for any SDOF system with circular frequency w, on the basis
of the first three moments of the power spectrum:

Ao = J[HG/0) | 25, @0" d @ ho=0,1,2
r= {2 ,{2mn [ﬁ ~ exp(-8g V' Sn 2 m)]:}% (1)
DjA, /2,
= e = - 2 1.2
B o 8o = V(1 - 2332 )

where: H(Q/w) = (1 = (/w)? + i2v(Q/w) ™"
Sa() the power spectrum of the ground acceleration
D the duration of the motion
P the exceedance probability associated to the response spectrum
ordinates.
The response spectrum is given by the expression:

R, (W) = x| f’ [H(Q/w) | 25,(Q) d Q]% ¢3)

In order to treat the inverse problem the power spectrum of the excita-
tion will be expressed by the relation:
N Cg
S () =I5 s@-1e, > (3)

where 8(+) is the Dirac function and $2, = 2mn/D.

The C, values will be evaluated by solving the integral equation (2).By
substituting the expression (3) in (2) the following set of equations is ob-
tained:
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y %
Ry (W) =x* L & [H' (0 /w) | 2

where the unknown values C, are multiplied by the factor r which is itself a
function of the Cp's through the first of (1). The solution requires an itera
tive procedure, which can be simplified by putting H(Q,/w) = O for Qy>w.

With this approximation the Cp values are simply derived from the expres

sion: R
2 Naw) ol o
cZ = 2| /w | L——rz— =L 5 CilE@ /W]

2. POWER SPECTRA OF LOCAL RESPONSE AND FLOOR RESPONSE SPECTRA

The three ground motion components are assumed to be defined by a single
power density function S,(R) and by the correlation matrix:

L Pyy Pxz
S = Joyx 1 pyy | 5,0

Pzx Pzy O

The cross-power density matrix (CPDM) of the modal response is given by:
5, = B(-DE Cu(WE" HE®) HE) = H' (@) /w?) (4)

where H(-Q) is the frequency response matrix, and P is a three column matrix,
containing the participation factors related to the three components of the
seismic action for all the modes.

The CPDM of the local response can be found as:

Sr(®) = ¥ Sgp@y" (5)

where V is a modal matrix containing in each column the values of the response
in the point of interest relative to each mode. Matrix V will contain modal
displacement or modal load effects, depending on the intended use. The acce
leration of the local response can be obtained by introducing in V the modal
displacement and then multiplying by §*:

S = Q'sp(@)
If the absolute acceleration is required, the dragging motion must be ad
ded in the response. Its CPDM is:

527@ = S2@ + T ca@1T + 22T ca@eT BV + m

+ X'EXQ)E_Qﬁ(Q)I?) (T: dragging matrix).

A first level of use of Sr(R2) is the evaluation of the maximum value of
the local response for a given exceedance probability. In this case the dire-
ct procedure presented in paragraph 1 will be used.Thediagonal value Sy ()
is the power density function of the response in point k. The peak value r
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will be evaluated using the process moments:

ot h

and the maximum response, with the probability used in evaluating r|6 l,is
given by: X =1 A4.

With this procedure all the correlations among the modes and among the
components of the ground motion are correctly accounted for.

The second use of Sy(Q) is the system reliability analysis of the main
structure, which can be carried out as shown in par. 4 for the case in which
the structure can be modeled as a series system.

A further use of the CPDM of local absolute acceleration is the evalua-
tion of the floor respomnse spectra. The direct procedure given in par. 1l w1ll
be adopted using the diagonal terms Srkk(ﬂ) In thisway the "combined spectra"
are directly obtained. Finally if a multi-supported piping system (with amass
light compared with that of the main supporting structure) must be studied,
the whole matrix §§b(9) will be used as illustrated in next paragraph.

3. STOCHASTIC ANALYSIS OF MULTISUPPORTED PIPING SYSTEM

As illustrated in l 4| and [ SL, the dynamic analysis of a multi-suppor-
ted structure subjected to a non—synchronous motion can be carried out in the
frequency domain in the usual way after partitioning the total degrees of free
dom in two parts: the first one associated with the displacements of the free
nodal points, and the second one containing the displacements of the support
nodal points.

The mass, damping and stiffness matrices have to be partitioned accordin
gly. The subscripts f and b will be used to refer to the free nodal points
and to the support ones, respectively.

Furthermore the global motion of each point can be regarded as composed
by a quasi-static part, related to the displacement of the support points,
and a dynamic part related to the dynamic response of the free points. The o-
ver-script s will be used for the quasi-static solution, and d for the dyna-
mic part. The global displacement vector Will be written as:

X xS xd
IR I
s
XZ xb 0
With these notations the equation of motion can be written in the follo-
wing form; where the partitioned m, ¢, k matrices have been employed

Efg(gz + % ) + (x + X ) + c xs f(x +X )+k o]

S
—-fbb Tl Ee TR Top X TR “fb Zp -

The quasi-static displacements of the free points can be related to the
supports displacements using the equation

s s _ _ _ -1 s _ s
Kepxp v Repxp =00 xf = - Kep kg x = Ax
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B? assuming the damping proportional to stiffne
regarding out-diagonal mass terms,
o .d . .d

X
e L T Spr X

' $Sieff=a keesCrp=a kep, dis
the equation of motion can be written as:
d
‘K - _ “S
Zgp g T T B AX ™

where, on the right-hand side, the excitation stochastic process appears in
terms of the absolute acceleration of the support points.

The CPDM of this stochastic process is the §; (?) matrix derived in para
graph 2. The equations (7) can be solved by the usual modal approach. The mo—

dal excitation,for each mode of the multi-supported structure supposed on fixed
supports, is the following:

Ef;ggg_é_ S _ _ .S

T N (8)
¥ mee ¥

where Y collects all the modal displacements vectors, and P contains the par—

ticipation factors of all the modes for each component of ;ﬁpports motion.
The procedure given in (4) provides the CPDM of the modal response §pBﬁQ)

and by means of a modal matrix V_ containing displacements or load effects in
the points of interest, the calculation (5) gives the response power density

§pr(Q) related to the dynamic component.

The power density matrix of the quasi-static component is
T
Sps (M) = Z(8,(/2") z €))

where Z is a matrix, analogous to V, containing the displacements (or load
effects) of the points of interest relative to each displacement of the sup-
ported points.

The total response power density matrix is:

S, @) = S, (@ + Sy (@ + 255, T H@V + o
* Vp HO-DR S 27

where §d,a(9) = §A,d(9) =f§a(Q)/Qz is the cross spectral density mat%ix bet-
ween displacements and accelerations of the support points on the main struc-
ture.

Using the procedure presented in paragraph 2 the maximum values of the
local response can be derived from the diagonal terms of the matrix §p(Q),ta—
king into account of the simultaneous quasi-static and dynamic effects.

4. PIPING RELIABILITY ANALYSIS

Let x be the time dependent vector process which contains the load effec
ts in the critical nodes of the piping, and X its time derivative. The cova-
riance matrix I, of x is obtained by integrating the CPDM of‘the t?tél pipi?g
response S_(Q) given by formula (10),and the covariancezmatrlx of x is obtai-
ned by integrating the CPDM of the derivative process §P(Q).‘

Furthemore let the piping be modeled as a series system with a polyhedral

27



safe domain. The failure probability is measured by the probability of out-—
crossing such a domain. That probability can be approximately evaluated by
means of the generalized Rice's formula, which provides the mean outcrossing
rate of the safe region.

By adding the further hypotesis that X and x are mutually indipendent pro
cesses, Rice's formula results so simplified:

n %ni
v=1Xs —— £ d
By Juy T an
i
where 03,1 is the standard deviation of the component of x orthogonal to the

face F; of the safe domain, fyx(x) is the joint probability density function
of x, and the summation is referred to all Fj.

The integrals contained in the summation (11) can be expressed as the pro
duct of the probability demsity of x lying on plane T; which contains the fa
ce Fj, by the conditional probability of x lying within F; given it lies on
plane ;.

Expressing the plane T; as a; +a; x=0 (Igi[=l), the integral (11) be-
comes:
p. L& dF =‘—’¢(_)P(X€le€‘ﬂ) (12)
i ZE Oii  Oij
where 9;3 =l4§i Ex a; is the standard deviation of the component of x ortho-

gonal to m;, and ¢ () is the standard normal density function.
The conditional probability contained in (12) can be evaluated as the
probability of the intersection of domains contained in plane T;, i.e.:

m
n
P_(x€ F, Ixenl) NN AP (13)
k#1
where Z is a vector of normal gaussian r.v. with covariance matrix:
— — -0 — T 5 T
kk'tl kaJ ik B _i (p -%———k ) )
il T-p2 |/I- IS g
Yyl =i yi-m 1 9 T

and Bkli are the safety distances between the projection of the origin on pla
ne T, and gach side of the polygon F; expressed by
k- B o (B = =5

——————————e q,
A — ‘kk
_ 2
Vi-oh
Ditlevesen's bounds | 1| are useful to evaluate expression (13). For this

purpose since such bounds can be applied to unions of events, the intersec—
tions contained in (13) must be transformed in the complementary unions:

ki =

P (xeFilxemn) =1 Pr(kUl Zy > By|s)

After evaluation of the mean outcrossing rate, the failure probability
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can be approximated by one of the following formulas:

Pg < VoD or Ppxl-eV?D
NUMERICAL EXEMPLE

The procedure illustrated in the previous paragraphs has been applied to
carry out the safety analysis of a piping system contained in a four stories
building. In Fig.l the building and the piping system are sketched. The USNRC
response spectrum scaled to the peak ground acceleration a = 0.20 g has been
adopted. Fig. 2 shows the response spectrum and the spectral power density de
rived from it following the procedure presented in par.l. Only the horizontal
components of the ground motion have been taken into account.

The procedure involves, at first, the stochastic analysis of the main
structure.As it has been shown in par. 2 at this stage of the analysis the lo-
cal response spectra can be taken out. Fig. 3 contains the floor response spec
tra relative to the component y of the absolute acceleration referred to two
points onsecond floor and one on fourth floor. Notice that both the ground mo-
tion components are taken into account in these spectra, and the correlations
among the vibration modes of the structure are accounted for as well. The dif
ference between the spectra n.5 and 7, relative to different points on the sa-
me floor should be noticed too; it is due to the torsional modes. The second
result of the stochastic analysis of the main structure is the CPDM relative
to the motion of the piping supports. The correlation matrix has been derived
from it by integration; it is shown in table 1.

The piping analysis, carried out according to par. 3, leads to the CPDM
of the piping response. In this application four sections, as indicated in fig.
1b, have been accounted for as critical elements, each one with two components
of bending moments.

At the end system reliability analysis has been worked out according
to par.4.The critical sections have been assigned of a strength equal to the
maximum values previously carried out. The circular strength domain of each
section have been approximated by an octagonal domain, tangent in the design
points. The mean rate of outcoming of the domain is included between 0.0323
and 0.0329. Since the input process duration has been assumed D=10 sec, the up
per boundPg £ 0.329 of the failure probability can be derived. This value ac-
counts for the presence of more critical sections. As a comparison notice that
a single of them offers the failure probability P¢ < 0.123. The values of Pg,
of course, depend from the design level adopted and are conditioned to the
seismic event taken as input of the analysis.
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Fig. 1 - Sketch of building and piping system.
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Fig. 2 - USNRC Response Spectrum (f£or p.g.a. Amax = 29) and derived Power Fig. 3 - Local response spectra for same components of piping excitation
Spectral Density. (exceed. prob. = 0.85).
1.00 -.0lL .937 .916 -.09 .075 .124 .872 .120 .823 .115 6.35 -.074 .952 -.084 -5.33 .563 -.377 -.447
1.00 .01 .07 .953 .835 .636 .CO7 .607 .007 .589 125. -.168 -16.9 .166. 16.3 .090 -23.9
1.00 .976 .009 -.075 -.124 .926 ~.120 .171 -.115 2.10 -.198 -.938 1.09 -1.09 -.819
1.00  .005 -.076 -.122 .974 =.121 .925 -.118 8.30 .299 -3.26 .083 9.91
1.00 .882 .677 .006 .659 .007 .634 20.87 -.004 -2.40 -.128
1.00 .944 -.066 .926 (058 .895 13.0 -.715 12,7
1.00 -.108 .984 -.09 .953 1.09 504
1.00 =106 .986 ~.104 26.2
1.00 -.094 991
1.00 -.091 8.87 36.60 4.60 10.1 16.0 12.6 3.40 17.2

1.0
Table 1: Correlation matrix for excitation of piping supports. Table 2: Covariance matrix ((Kg-m)?) and maximum values
(Kg-m) for bending moment in critical sections.
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