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SUMMARY

A simple and efficient nonparametric identification technique is applied
to a multistory building under seismic excitation. Using the limited amount
of available excitation and response measurements, a reduced-order nonlinear
nonparametric model is constructed. This model is subsequently used to
generate estimates of unavailable response measures which allows the analysis
of the building as a chain-like system that is amenable to treatment by an
even simpler identification technique. It is shown that the building under-
went significant nonlinear nonconservative deformations, particularly in the
zones involving the interstory motions between the ground and first story,
and between the second and third story.

INTRODUCTION

North Hall is a three-story office building constructed in 1960 and
located on the campus of the University of California, Santa Barbara (UCSB).
Following its rehabilitation in 1975, the building was fully instrumented by
strong motion seismic recorders. Thus, the occurrence of the 13 August 1978
Santa Barbara earthquake generated a large data base of strong motion mea-
surements from the installed instruments (see Fig. 1).

This paper is concerned with the development of an appropriate not-
necessarily linear building model by the use of the available response
measurements of the building under earthquake ground motion. Particular

attention is devoted to determining the nature, extent and location of the
nonlinear building characteristics.

FORMULATION
Introduction
Consider a discrete nonlinear dynamic system whose motion is governed by
ME + £(x,%) = p(t) , eb

where M = diagonal mass matrix of order n, x(t) = displacement vector
= {xl,xz,...,xn}T, f = function that represents nonconservative nonlinear
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forces, and p(t) = excitation vector. Assume that an "equivalent" stiffness
matrix K corfesponding to the range of motion of interest can be determined,

Restoring Force Estimation

Now solving the eigenvalue problem associated with the linearized
version of Eq. (1) results in the transformation

x= 0y @

where ¢ is the eigenvector matrix and u is the vector of generalized
coordinates.

Making use of Eq. (2), the system equation of motion Eq. (1) can be
converted to the form

(e, = ¢'E660) = 6T () - M D), 3)

where h is a vector corresponding to the transformed nonlinear forces acting
on the system. Note from Eq. (3) that if the terms appearing on the right-
hand-side (RHS) are known, the time history of each component of vector h
can be determined. -

Note also that in the case of a linear system, due to the orthogonality
condition associated with ¢, the set of equations represented by Eq. (3) are
decoupled; i.e., each component hj of h depends only on the jth generalized
coordinate uy rather than on all components of u.

Guided by the preceding observation, the central idea of the present
method is that in the case of nonlinear dynamic systems commonly encountered
in the structural engineering field, a judicious assumption is that each
component of h can be expressed in terms of a series of the form:

J
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The approximation indicated in Eq. (4) is that each component hy of the
nonlinear generalized restoring force h can be adequately estimated by a
collection of terms hl(J) each one of which involves a pair of generalized
coordinates (displacements and/or veloc1t1es) The particular choice of
combinations and permutations of uy and up and the number of terms Jp,x
needed for a given h; depend on the nature and extent of the nonlinear%ty
of the system and 1ts effects on the specific "mode”" i. Note that the
formulation in Eq. (4) allows for "modal" interaction between all modal
displacements and velocities, taken two at a time.

Series Expansion

The individual terms appearing in the series expansion of Eq. (4) may
be evaluated by using the least-squares approach to determine the optimum
fit for the time history of each hi. Thus, hi(l) may be expressed as a
double series involving a sultable ch01ce of basis functions,
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Eq. (4) is obtained by fittiﬁg the residual error with a similar double
series involving other pairs of generalized coordinates that have significant
interaction with '"mode" 1.

Least-Squares Fit

Using two-dimensional orthogonal pglynomials to estimate each hj (y, u)
by a series of approximating functions h (3) of the form indicated 1n Eq. (5),
then the numerical value of the Cyg coeff1c1ents can be determined by invok-
ing the applicable orthogonality conditions for the chosen polynomials.
While there is a wide choice of suitable basis functions for least-squares
application, the orthogonal nature of the Chebyshev polynomials and their
"equal ripple" characteristics make them convenient to use in the present
work.

Note that in the special case when no cross-product terms are involved
in any of the series terms, functions h can be expressed as the sum of two
one~dimensional orthogonal polynomial series instead of a single two-
dimensional series of the type under discussion.

Special Case of Chain-Like Systems

A major feature of the identification method under discussion is that
it is not restricted to any particular structural configuration or class of
discrete nonlinear systems. However, in the special case of structures that
can be adequately modeled as chain-like systems (e.g., simplified MDOF stick
models of buildings) whose adjoining mass points are interconnected by a
single nonlinear element, considerable simplification is obtained in the
identification procedure since these structures have the property that the
nonlinearities in the various links of the chain are independent of each
other (i.e., are dependent only on relative motions between masses). Thus,
with a suitable transformation of wvariables, the task of ldentlfylng an n
DOF system reduces to that of identifying n separate SDOF systems.

Consider a MDOF chain-like structure consisting of n lumped masses
each of magnitude m;. The structure may be subjected to base excitation
S(t) and/or directly applied forces F;(t). The absolute displacement of
m; is measured by xj(t); the corresponding relative displacement with
respect to the moving support is given by yi(t) = xi(t) - S(t); and the
interstory relative motion is specified by z;(t) = xj(t) - x3-1(t) for

i > 1, and zy(t) = x3(t) - S(t). The arbitrary nonlinear elements
interposed between the masses are represented by functions G; which are
dependent on the relative displacement and velocity across the terminals

of each element.

It follows directly from the equations of motion for such systems that
the nonlinear restoring functions can be expressed as
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Gn(zn,zn) = Fn(t) -m X

(6)

R o s i=1,2..., n-1
6,(z;52,) = Fy(e) —my ¥ + Gy (252,05 4

Then, using the procedure outlined above for the general nonlinear MDOF
system, each of the "real" restoring forces Gj is estimated by an approxi-
mating function Gj expressed in terms of two—dimensional_orthogonal poly-
nomials involving the associated state variables zj and zj:

. Pa) ® _ Z Z (l> Y o
6;(zpp2y) = 8;(zin2) = ) O TP T2 - ™

APPLICATION

Processing of Measured Data

Analog measurements of the earthquake ground motion and the building
response were processed using modern time series analysis techniques. The
digitized measurements consisted of the time histories of the acceleration,
velocity, and displacement at different locations and directions (Ref. 2).

For the purposes of this study, the building motion in the North-South
direction was used. Figure 2 indicates the simplified 3-degrees-of-freedom
building model used as well as the corresponding recorded motions. Notice
that the motion of mg (the second floor) was not measured during the earth-
quake.

Linearized Structure Properties

A linearized analysis of the building was performed using the ETABS
finite element code (Ref. 3). The structure was modeled as having 24 frames
and three stories. A summary of the mass distribution and the dominant mode
shapes corresponding to the DOF's under discussion are given in Fig. 3.

Nonparametric Identification of North Hall

Using the data in Fig. 3 and the general procedure outlined above
(i.e., without invoking the chain-like characteristics of the simplified
model), results in the time history of the dominant modal parameters. Plots
of hy(t) and hj(t) are shown in Fig. 4. A three-dimensional repregentation
of the surfaces associated with the measured h; and approximating hy are
shown in Figs. 5(a) and 5(b) respectively.

Following the procedure in Eq. (5), the identification results shown
in Fig. 4(b) are obtained. The relatively good agreement between the
measured and estimated time history of the modal parameters shown in Fig. 4
is typical.

By incrementally solving the reduced-order system equations and using

the transformation in Eq. (2), the approximate response time histories of
all of the building's 3 degrees of freedom were computed (estimated) and are
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compared to the available measurements in Fig. 6. The computed results
shown in Fig. 6 are based on using only the contribution of the first "mode"
hj.

Note from Fig. 1 that no measurements are available for the motion of
the first story m;; thus the computed response §7(t), yl(t) and xl(t) are
predicted measurements that can be used to estimate the interstory motioms,
some of which are shown in Fig. 7.

Chain-Like Model of North-Hall

Following the procedure in Eq. (7), North-Hall is treated as a chain-
like system and its interstory restoring forces G; are determined and plotted
versus their corresponding state variables in Figs. 8 and 9 from which it is
clear that significant nonlinear behavior is present.

The identified coefficients of Eq. (7) corresponding to Gy, Gy and G3
are shown in Fig. 10. The adequacy of the identification results is illustra-
ted in Fig. 10 where the time histories of the measured (estimated) Gji(t)
are compared to the computed (predicted) G;(t) over the time span correspon-
ding to the strong-motion part of the Santa Barbara earthquake.

The use of additional translational and rotational DOF are expected to
yield even better correlation between measured and predicted response
based on simplified reduced-order nonliner models.
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FIGURE 8. MEASURED VARIATION OF INTERSTORY FORCES WITH INTERSTORY DEFLECTIONS
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FIGURE 9. MEASURED AND ESTIMATED INTERSTORY FORCES

OF NORTH HALL

102

IN CHAIN-LIKE MODEL





