SHAKING TABLE STUDIES
OF
AN ECCENTRICALLY X-BRACED STEEL STRUCTURE
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SUMMARY

A 5-story, one-third-scaled, eccentrically X-braced steel structure
weighing about 50 tons was tested on the 20' x 20' shaking table at the
Earthquake Engineering Research Center (EERC) of the University of Cali-
fornia, Berkeley to observe its seismic behavior. The results indicated
that the test structure could effectively resist an E1l Centro type table
motion with a peak acceleration of 1.15g, and a ductility factor of
about 100 was recorded in shear yielding of beanms. A simplified
mathematical model was formulated for response calculation to compare
with the experiment results and a fairly good correlation was achieved.

INTRODUCTION

The eccentric bracing system, which shifts the inelastic behavior
of a braced frame from conventional tension yielding and compression
buckling of braces to shear or bending yielding of beams, gives a struc-
ture the necessary stiffness and strength for frequent events while its
ductility for major earthquakes is ensured by inelastic behavior of
girders. Figure 1 shows some examples of eccentricity arrangements.
All have been tested by quasi-static experiments to have excellent
seismic resistant potential (Ref. 1, 2, 3, 4, 5, 6). They all possess
high strengths and large stiffnesses, and are ductile if their yielding
capacities are exceeded. Especially, other than imminent destruction,
unlike conventional bracing, they demonstrated no pinching of hysteresis
curves and deterioration of strength and stiffness. However, no dynamic
investigation was known to have been done previously.

The purpose of this study is to investigate the earthquake resis-
tive efficiency of eccentric X-bracing by studying the responses of a
test structure (see Fig. 2) to simulated earthquakes, and to acquire
true seismic data for correlation with results calculated by computer to
investigate and improve the effectiveness of computer codes. The exper-
iment was carried out on the 20' x 20' shaking table of the earthquake
simulator laboratory at the EERC (Ref. 7).

The experimental results depicting the seismic performance and the
result of correlation between experiment and analysis will be presented.
The complete detailed presentation of this study is in Ref. 8.
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TEST STRUCTURE AND SEISMIC INPUT

The test structure was made of upper portion of the 9~story steel
building frame designed for a previous study (Ref. 9). As shown in Fig.
2, the structure has 4 one-bay plane frames. The eccentric X-bracing
was added into the structure in the lower two stories of the two exte-
rior plane frames. The detailed layout of the eccentric X-bracing 1is
shown in Fig. 3. A total of 45 tons of concrete blocks were distributed
among thé stories in a pattern of 24-18-18-18-12 kips from top to bottom
to induce inertia forces. The structure was oriented such that the
bracing was parallel to the direction of table motion. It should be
noted that the two interior plane frames were disabled to reduce the
base shear requirement. Thus the total lateral load was essentially
resisted by the two exterior braced plane frame only.

As shown in Fig. 3, the eccentric part of the beam, which will be
referred to as 'shear link' because it took mainly shear forces, was
designed to be replaceable. Three different sets of links were fabri-
cated and tested to destruction. From here on, the test structure will
be referred as Specimen 1, 2, or 3 depending on which set of shear links
were installed in it. The strength of links are increasing as specimen
numbers, i.e., Specimen 1 had the weakest links.

The source signals of the table motions were the SOOE component of
the E1 Centro 1940 and the S7T4W component of the Pacoima 1971 earthquake
records, denoted by EC and PAC, respectively. Because the test struc-
ture was presumed one third of a prototype in length scale, the table
signals were speeded up by a factor of 1.73, to maintain similitude.
And the intensity was adjusted by the control console's span setting.
Thus, a table motion was designated by a combination of these three fac-
tors. For instance, 1.73*EC 400 denotes a time scaled E1 Centro type
table signal with a control console span setting of 400. This typical
table motion was shown in Fig. 4.

EXPERIMENTAL RESULTS

During the tests, the structure experienced no damage except buck-
ling and fracture of the shear links. Figure 5 shows the damaged links
of Specimen 2 and Figures 6 and 7 show the shear link and the associated
global structural hysteresis loops. It 1is obvious that they are
strongly correlated.

Maximum Base Shears and Overturning Moments

The maximum values of the overturning moments and base shears
observed are shown in Fig. 8. As shown, specimens with weaker links
produced smaller forces. For example, subjected to 1.73*EC 200, Speci-
men 3 generated 47% more overturning moment and base shear than Specimen
1. This is because Specimen 1 experienced tremendous link yielding, the
structure was thus effectively isolated from the earthquake excitation.
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Energy Dissipation Efficiency

The amount of energy dissipated by one of the two 1links and the
total energy input are shown in Table 1. Their unit is inch-kips.

Energy Input and Energy Disspation
Total Dissipated

Table peak Energy by
Motion acceleration Input one Link (3)=
N (2) (2)/7(1)
Specimen 1
1.73*EC 200 .43g 152.9 73.3 48%
Specimen 2
1.73%¥EC 200 .U3g 142,3 49.7 35%
1.73¥EC 400 .98g 516.3 215.5 42%
Specimen 3
1.73*EC 200 J43g 151.3 22.0 15%
1.73*EC 400 .98g 556.9 122.3 22%
1.73*PAC300 1.11g 390.9 51.9 13%
1.73*EC 450 1.16g 664.8 129.9 20%

Table 1. Energy Input and Dissipation

Some observation can be concluded from the tabulated results: (a)
Subjected to the same table motion, weaker links dissipated more energy.
(b) A stronger link dissipated a smaller portion of total energy input.
(Thus, a greater response can be expected for a specimen with stronger
links.) (c) With comparable peak accelerations, the E1 Centro motions
gave more energy to the structure than did the Pacoima motions because
the former have a longer duration.

Maximum Brace Strains

The maximum brace strains measured from all tests plotted against
the corresponding peak table accelerations are shown in Fig. 9, The unit
of brace strains is milli-inch per inch (mil/in). This figure shows
that all specimens had the similar maximum elastic responses when they
were excited by small motions, 1.73¥EC 50's. It also shows that because
of 1link yielding the brace strains did not increase proportionally with
the table intensities.

Displacement Envelopes

Figure 10 shows the maximum displacement responses of all three
specimens. Consistently, Specimen 3 had the greatest response. The
soft-story effect is obvious in Specimen 1's envelope.
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DATA CORRELATION

Since the structure was symmetric, only one quarter of the
structure was modeled as shown in Fig. 11. In addition, the elastic
upper three stories, which remained elastic in all tests, were modeled
by a single shear story. The height, column stiffness, and mass of this
shear story were determined such that the first mode overturning moment,
base shear, and frequency of the original three stories would be
preserved., Table pitching was considered by Element 16. The only ine-
lastic element 1is Element 11, which was to model the shear yielding
behavior provided that its tensile capacity was equal to the shear capa-
city of the link. This model has only 17 displacement unknowns.

The nonlinear computer code, DRAIN-2D (Ref. 10), was used to do the
calculation. A typical comparison between the calculated and measured
results is given in Fig. 12. As shown, the peak responses were overes-
timated at link yielding because of numerical algorithm. A smaller step
size is required to reduce the overshooting. In addition, the model
damping used, which was 2.8%, was more than reality.

CONCLUSION

This investigation yielded the first available dynamic data of
seismic behavior of an eccentrically braced frame. The data shows that
the responses of this test structure was governed essentially by the
strength of the shear 1links. A linear relationship between force
responses and link strength was observed. The floor displacements were
also related strongly to the link shear deformation.

It was interesting to observe from the structural hystereses that
the test structure had a tendency to regain its lateral stiffness after
yielding. This is because the bracing system always had two braces in
tension to align with the deformed link to function as a single diagonal
brace accross the first story girder.

More study is required to achieve better correlation between exper-—
imental and analytical results. The test structure is of a strong
girder-weak column design category. To understand the seismic behavior
of an eccentrically X-braced structure which has strong columns and weak
girders, more dynamic study is required.
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RNy /4 \ |
| "/ N\ ]
T \YJ
wenss— |
oot L
M ol |
S8 & 1 S S GUIS S R S | & S
< S
|
R 7xdn |
BN susser lare t |
1 @\
| \ A -
! N\ e |
1 NG g i
i N "/
{ SN X3 -]
| AN / e
| g N
| U] coumemce % <
Pt e easny /
| —Radn /
i | a ‘\ o mare i/
. yusxy :
E L Jeess w O
bt -

FIG. 3 DETAILS OF ECCENTRIC X-BRACING
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FIG. 5 DAMAGED LINKS (SPECIMEN 2)
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