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SUMMARY

This paper shows the considerable influence that joint behavior in a frame
Plays in the response of the frame to a dynamic forcing function. The behavior
is demonstrated by means of experimental results obtained when a three-story
steel frame is subjected to seismic motions on a shaking table and the results
are used to formulate a mathematical model of the frame using system identifi-
cation.

INTRODUCTION

To date most mathematical models of moment-resisting frames are formulated
using the geometric and material properties of the members and assuming that the
joints are continuous. This assumption implies that the joints are rigid and
that at a joint all members rotate the same amount. As many frames are construc-
ted so that the stiffnesses of the columns and girders are relatively the same,
the deformation that occurs when the frames are subjected to earthquake motions
will involve joint rotations as well as floor translations; thus, the behavior of
a joint during rotation is significant in many frames. When a mathematical model
of such a frame is constructed using this traditional method, the model predicts
quite poorly the responses recorded when the frame is subjected to an earthquake
input on the shaking table at the Earthquake Engineering Research Center, Univer-
sity of California, Berkeley. To our knowledge the first detailed study that
associate the shortcomings of the traditional mathematical model with the
assumption of continuity of the joints was conducted by Kaya and McNiven([1].

They gained physical insight into the problem by using system identification to
construct a number of mathematical models of a frame. They accounted for joint
deformation in a somewhat oblique way. They constructed their best mathematical
model by introducing a set of parameters; one parameter was associated with the
geometric length of each column and girder and an additional parameter accounted
for viscous damping. When the cost function was minimized using a Gauss-Newton
optimization algorithm and the resulting "best set" of values for the parameters
was inserted into the model, it predicted response of the frame extremely
accurately. The length of a member times the parameter associated with it was
considered to be the "effective' member length. As the effective length
differed from the geometric length, Kaya and McNiven concluded that the joints
did in fact change shape during the deformation of the frame and that when this
change of shape is accounted for, the model is significantly improved.

In this paper we take what we think is the next logical step in improving
the formulation of the mathematical model of a moment-resisting frame. The
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step is to isolate each joint to be considered as a separate element in the
frame behavior. The formulation described in what follows has a number of ad-
vantages over the previous formulation by Kaya and McNiven. First, we have not
resorted to static condensation of the stiffness matrix which results in a
relationship between translation and joint rotation that depends on the conti-
nuity of the joint behavior we know is violated. We are able to reduce from
eight to four the number of free parameters to be identified by optimization,
thus reducing considerably the computer costs of this operation. We take ad-
vantage of symmetry, as did Kaya and McNiven, but further find that the same
parameter suffices for all three columns and that no adjustment is needed for
the girder lengths. We consider that when a joint deforms it can do so both due
to shear and to the moments imposed upon it. An in-depth study, shows that when
we associate a parameter with each of these deformations, the parameters, during
optimization, do not behave independently, so that one parameter is sufficient
to account for joint deformation. We arbitrarily choose to associate the para-
meter with the shear deformation. The third parameter reveals the viscous damp-
ing and the fourth accounts, as in the previous study, for the rocking of the
shaking table during excitation.

System identification requires experimental results and we are fortunate to
have the results of experiments conducted by Clough and Tang [2]. The experi-
ments were conducted on a three-story steel frame with welded connections be-
tween girders and columns. The stiffnesses of the girders and columns were of
the same order of magnitude. We are particularly fortunate for this study in
that Clough and Tang conducted two series of tests, designated Phase I and Phase
I1, wherein the only difference in the frames for the two phases was in the
joints. TFor Phase II the joints of Phase I were stiffened significantly. In
our mathematical modeling of the frames for the two phases we are able to show
that the parameters associated with the columns and the rotation of the table
are essentially the same. The damping of the Phase II frame is somewhat higher
than that for Phase I, as one would expect. The parameters for the joints,
however, differ significantly, the parameter for the stiffened joint being more
than twice that for the joint of Phase I.

THE THREE-STORY FRAME

The test structure consisted of two parallel, single-bay, three-story,
moment-resistant steel frames. The frames were fabricated from standard rolled
shapes of ASTM A-36 grade steel. Two frames, designated A and B, were separated
by 6'. They were connected at floor levels by removable cross beams and bracing
angles, producing the effect of a floor diaphragm rigid in its own plane. The
Total height of the structure was 17'14". The story heights were 6'8", 5'4",
and 5'4". The bay width was 12'0". Sections W5-16 and W6-12 were used for
columns and girders, respectively.

Fully penetrated welded girder to column connections were used. The panel
zone thickness was 1/4" (i.e., the column web thickness) for Phase T of the ex—
periments, and 1" (column web reinforced by 3/8" doubler plates on both sides)
for Phase II.

The frames were instrumented with linear potentiometers at each floor to
measure floor translation. The frames had strain gauges attached to both flanges
at the top and bottom of each column. Assuming a linear variation of bending
strain along the length of a column, the relative rotation of the ends will be
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given by:
€ +€
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where €, and €, are the bending strains at either end, L is the length of the
column, and h is its depth.

The table excitation used was the El Centro earthquake.
CONSTRUCTION OF THE MATHEMATICAL MODEL

The mathematical model associated with the dynamic behavior of an n degree
of freedom linear elastic structure subjected to rigid base motion is:

2
a2y | du du
Ty tog thus e £
dt dt
du(0) _ _
o = a0 =0 @
where m is the mass matrix, ¢ is the damping matrix, and k is the stiffness
2
matrix. é—%, %%, and u are vectors for relative acceleration, velocity, and
dt
dz_\i
displacement. __Eﬁ is the base acceleration and r is a column vector whose
dt

elements are static displacements due to a unit displacement of the structure.

It is possible to find a matrix, P, so that M?EFEE and E;EFEE are both dia-
gonal matrices; i.e., M; =0 if 1 # j. If we make the change in variables:
J

u=PY (3)

then the differential equation of motion can be rewritten:

2
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== —dt —_ =

dt
where dZu
C=2ck and P(t) = -Rmr—t (5)
at

Developed here is a finite element model in which joint panel zones are
assumed to be rigid in reacting to flexural and axial forces, but shear distor-
tions are allowed. The column element stiffnesses will be given by:

248 1-B 0
_IS = k' 1‘—8 2+B 0 (6)
[ A
0 0 Ef(l+28)
The girder stiffnesses will be given by:
_ 3EI
k=1 @
The joint stiffnesses will be given by:
k = Gbht (8)
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where: 2ET 6ET

K=ty ° T2, ®

and E, I, A, and A' denote Young's modulus, moment of inertia, section area, and
effective shear area, respectively. The displacement transformation matrices,

Aj, for each element are given by:

Girders:
a) 0 0 0 1 0 0 -1/1 0 0 1 0 0 0 0
b) 0 0 0 0 1 0 0-1/1 0 0 1 0 0 0
c) 0 0 0 0 0 1 0 0 -1/1 0 0 1 0 0
Columns:
a) -1/1 1/1 0 1 0 0 0 0 0 0 0 0 0 0
=-1/1 1/1 0 0 1 0 0 0 0 4] 0 0 0 0
0 0 0 0 0 0 1 -1 0 0 0 0 0 0
b) 0 -1/1 1/1 0 1 0 0 0 0 0 0 0 0 0
0 -1/1 1/1 0 0 1 0 0 0 0 0 0 0 0
Q 0 0 0 0 0 0 1 -1 0 0 0 0 0
c) 0 0 -1/1 0 0 1 0 0 0 0 0 0 0 0
0 0 -1/1 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 Q 0 Q -72
Joints:
a) 0 0 0 0 0 0 0 0 0 1 0 0 0 0
b) 0 0 0 0 0 0 0 0 0 0 1 0 0 0
c) 0 4} 0 0 0 0 0 0 0 0 0 1 0 0
d) 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Table Spring:
0 0 0 0 0 0 0 0 0 0 0 0 0 72

The global stiffness matrix will be:
K = Za%k A, (10)
= —i—i—i

The formulation at this stage accommodates a large family of models. Five
models are constructed as groundwork for preparation of the final model, the one
in which the joints are considered as separate elements. This preliminary work
has two purposes. The first is to confirm the major findings of Kaya and
McNiven: (a) if rotation is to be accommodated in the model, the response quan-—
tities for the cost function must include joint rotation as well as floor
translation time histories and (b) consideration of the pitching of the shaking
table has a significant effect on the parameters associated with the girders.
The second purpose is to investigate whether the number of parameters introduced
by Kaya and McNiven can be reduced without appreciably affecting the ability of
the model to predict the experimental frame response.
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Identification Using Only Floor Displacements

For the first three models, only the floor translation (displacement) time
histories are used and only the first six seconds of response. These time
histories are constructed primarily to explore the number of separate parameters
needed for association with the columns. In model one, three parameters are
used, along with mass proportional damping and optimization resulted in the
parameters for the top two floors being almost identical but different from the
lowest floor column. Model two uses only three parameters, one for the top two
columns, one for the lowest colummn, and one for damping. The error for the
optimized parameters remains unchanged. The third model then uses only omne
parameter for all three columns but associates three additional parameters with
the girders. With damping there are five parameters. The major finding here
confirms what was pointed out by Kaya and McNiven: that is, if only the floor
translation time histories are used, the parameters associated with the girders
are not unique and there could be a family of models that would predict the
time histories of the floor translatioms.

Identification Using Both Displacements and Rotations

It appears that the girder and column length factors do not form an inde-
pendent set of parameters with respect to displacement response data. However,
the rotation data, inferred from strain measurements, are not of the same
magnitude as the displacement data. If the rotation data are used directly in
identifying the parameters they could be expected to have little or no effect.
The rotation data, therefore, are scaled by the modulus of elasticity of the
steel, E=29.6x106 psi. While somewhat arbitrary, this causes the two sets of
data to be of the same order of magnitude.

In the fourth model twelve seconds of response data are used with the same
set of parameters as model three but using both floor tramslation and joint
rotation responses. The findings of Kaya and McNiven are confirmed. The column
parameter and the three girder parameters are of the same order of magnitude,
the parameter for the column being greater than ome and the three for the girders
less than one. However, in this latter case they are unique.

Finally, in model five an additional parameter is introduced to account for
the pitching of the table. The initial value of this parameter is the one
suggested by Tang [3]. An examination of the parameter resulting from optimi~
zation shows that the algorithm tends to "soften'" the system by increasing the
base stiffness and, to compensate, decreases the effective girder lengths. Thus,
it appears that the girder and base parameters do not form an independent set.

Model 6: The Final Model

In the previous models, the parameter adjustment primarily took place in
the effective girder lengths. In contrast, model six is an attempt to permit
the joints to accommodate the response. Thus, a four-parameter model is
formulated, with one parameter associated with the columns, one parameter with
the base stiffness, one parameter with the effective joint panel thickness, and
one for damping. After identification, parameter values are as follows:
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Phase I Phase IT

Parameter Value Value
column 1.09 1.07
base .96 .97
joint 2.16 5.27
damping 1.35 1.53

Note that the colummn and base parameters are close to their estimated values
and are unaffected by the stiffening of the joints. The Phase II frame has a
higher damping factor than the frame for Phase I, which we would anticipate.
The most significant observation is that the joint parameter for the Phase II
frame is significantly higher than the comparable parameter for the Phase I
frame, indicating that joint stiffness plays a major role in the model.

The influence of the joint behavior is exhibited in the figures. The
responses predicted by the "traditional” model, neglecting joint deformation,
and by model six are each compared to the recorded experimental responses for
both floor translations and joint rotations. Examination shows that model six
predicts the seismic response of the frame significantly better than the model
neglecting joint deformation.
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FIGURE 4
Comparison with Response from Model Six
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