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SUMMARY

This paper describes the response behavior of H-shaped steel column to
bi-directional earthquake motions simulated by the hybrid system of a digital
computer and a loading test system. Two analytical models for the "pure"
computer analysis are also described. Comparison are made between the
response behavior simulated by the on-line system and those computed by using
these analytical models. The results indicate that even the simplest model
such as bi-linear is available for rough estimation of the response of H-

shaped steel column to bi-directional earthquake motioms.
INTRODUCTION

It is important in the earthquake resistant design of structures to know
the effect of the coupled lateral response of structures to bi-directional
earthquake motions. Many researches have been reported on the response of
structures to bi-directional earthquake motions (e.g. Ref.l) and several
analytical models have been proposed to compute the inelastic behavior of
resisting elements such as column under multi-dimensional forces. However,
there are very few experimental researches on the inelastic behavior of the
H-shaped steel columns under bi-directional cyclic loadings. Experimental
verification of the analytical models is still to be performed. -A response
analysis system, called IIS Computer-Actuator (On-line) Hybrid System, was
developed to obtain the inelastic response behavior of structural models. In
the analysis by this method, the responses are computed on the basis of the
real restoring force characteristics obtained from the computer-controlled
loading test of structure or structural element. So to speak, the assumed
analytical model of restoring force characteristics in the "pure' computer
analysis is replaced by the real ome in the on-line system procedure. This
paper presents the response behavior of steel H-shaped columns to two
horizontal components of recorded earthquake motions analyzed by the on-line
system. Then, two numerical methods are presented. One is denoted Fiber-
Model in whlch a tri-linear type stress-strain relationship was used. The
other is denoted Parabolic Model which is an extention of Ziegler's kinematic
hardening rule with a bi-linear type shear—dlsplacement relationship (Ref.2).
The results computed by these numerical models are compared with the results
by the on-=line system.

A FRAME MODEL -

A one-bay square single-story building model which comprises a rigid
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floor and four H-shaped steel columns as shown in Fig.l is intended for
analyses. It is assumed that four columns are identical and their slender-
ness ratios are small. The stiffness center on the floor of this frame
coincides with the mass center, and the torsional motion of this frame is
considered to be negligible. If the torsional motion of the floor is
neglected, the rigid floor comnecting the tops of columns always moves hori-
zontally without showing torsion. Then the analysis of a single column is
considered enough to predict the response behavior of this frame. Therefore,
a single column with the lumped mass on the top shown in Fig.2 is . .taken as an
model. The changes of the axial load of the column and the vertical motion of
the mass center are also neglected in this analysis.

COMPUTER-ACTUATOR ON-LINE ANALYSIS

Procedure of On-line Analysis

The principle and analytical procedure of the system have been reported
in the previous papers (e.g. Ref.3). Brief review on the analytical proce-
dures of the system is represented here intending the emphasis on the specific
feature of the bi-directional response analysis. Principal directions of a
H-shaped column section are initially parallel to the east-west and the north-
south directions, respectively. In the case that the mass is lumped on the
top of the column and the rotation about the column axis is neglected, the
equations of motion predicting the response at the top of the column can be
expressed as follows;

mit + Q, = -mii, ey

o

]
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where m is the mass, 4%, ¥! denote the response accelerations, Qi, Q; the
restoring forces, and ﬁ:, ¥V, the ground accelerations in the x, y direction,
respectively. The superscript, i, denotes the variable at the time, t=i At,
where At is the time increment used in the step-by-step numerical integration
of equations of motion. In the hybrid system, the open-type finite differ-
ence method is used to solve Egs.(l) and (2) numerically. The simplest
central difference method gives the following expressions for the accelera-
tions, @~ and ¥1.

it = (ui+l - Zui + ui—l)/(At)z (3)

{i;

(v# - 2vi 4+ vi)/(at)? 4)

! and ¥ in Eqs. (1) and (2) are replaced by the right side of Egs.(3) and
(4). Then, the response values u**! and vi*f at t=(i+l)At can be calculated
for the ground accelerations at t=iAt, namely @' and ¥, since 0%, @i, ut, v’,
uf‘land vilare already known. In the on-line gystem,othe valueg of Qi and
Qy are provided by the column load test. The response displacement, ui*land
vitl, are imposed in turn on the column specimen to measure new restoring
force, erand Q;ﬂat time t=(i+l)At. This procedure is continued succes-
sively until a run of analysis is completed. The fundamental flow of the
procedure on the on-line system is shown in Fig.3.

Column Specimens and Test Set-up
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To measure the restoring force characteristics of the bi-axial bending
column, the load test were carried out on the welded built-up H-shaped steel
column specimens, H-70%70%6%6. This column is 89%cm in length (Slenderness
ratio about strong axis bending, A x=32, slenderness ratio about weak axis
bending, Ay =53). Two hydraulic jacks placed horizontally in the principal
axis directions of the column impose the calculated response displacements at
a moment and then the restoring forces are measured as reaction forces. A
jack placed at the bottom of the column provides the constant thrust to the
column during the analysis. The thrust was set 30% of the yield force Py
(=o04A; oy=the measured yield stress, A=the section area).

Assumed Frames and Scaled Ground Acceleration Records

A series of on-line analyses were carried out for the frame models listed
in Table 1. The column models with the identical sectiom and length were
intended in use. The fundamental elastic period with respect to the strong
axis bending motion was fixed to 0.5 second. The variables comnsidered were
the ground motion characteristics (EW and NS components of 1968 HACHINOHE, and
EW and NS components of 1940 EL CENTRO) and the combinatioms of the inten—
sities of ground accelerations in each direction. The scaled intensities in
each direction were decided on the basis of the yield acceleration apc
(=Mpc/(mL/2); Mpc=the full plastic moment under thrust, m=the mass, L=the

column length).

COMPUTER ANALYSIS BY FIBER MODEL

In the pure computer analysis, it is necessary to calculate the restoring
forces, Q,, Qi in Eqs. (1) and (2) by a numerical method. Plastic action is
dependent on the loading history and requires the step-by-step calculation
procedure, even though the prescribed stress-strain relationship of the
material is assumed. It takes much time to calculate by computer even in an
approximate solution, so drastic simplifications and idealizations are
necessary. The basic assumptions made in this paper are as follow;

(1) Only the stress and strain component normal to the section are
considered.

(2) The twisting moment and deformation are neglected.

(3) The axial force is constant along the axis of a beam-column.

(4) The small deflection theory is applied. The incremental calculation is
conducted.

(5) The curvature of an axis of a column can be expressed in terms of the
second derivative of the deflectionms.

(6) The cross section does not change its shape.

(7) The premature local buckling and torsional buckling do not occur.

By symmetry of the analyzed model, the calculation on a canti-lever, a half of
a column, can represent the overall behavior. The differential equation of
the beam-column was solved approximately by a finite difference method. The
finite difference nodes used in the calculations are shown in Fig.4. For
carrying out the numerical calculations of the rigidity in the plastic range,
the H-section is divided into small elements as shown in Fig.5. The strain
and stress in each element are computed as the average values at its centroid.
The stress-strain relationship is assumed to be a tri-linear model as shown
in Fig.6. This model was determined so that it can predict also well the
cyclic behavior of a beam—column due to bi-axial bending moments and thrust.
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The computer analyses were conducted for the same column as used in the on-
line analyses. For numerical integration of the equations of motion, the
linear acceleration method was adopted, where the time increment was set 0.01
second.

COMPUTER ANALYSIS BY PARABOLIC MODEL

Non-linear restoring force characteristics such as bi-linear, tri-linear,
Ramberg-Osgood type functions etc. have been widely adopted as analytical
models for the earthquake response analysis of the planar structures. The
analytical models are desired to be as simple as possible from the view point
of structural design. We developed a shear force-displacement relationship
model for bi-axially loaded beam-colummns by extending the bi-linear model into
two dimensional one. The model consists of the initial yield conditiom, a
flow rule and a hardening rule.

Initial Yield Condition, Flow Rule and Hardening Rule

The initial yield condition is often expressed by an eliptic functionm,
but in this case a set of parabolic function in Fig.7 was taken. The yield
function can be expressed as follows:

& = (9x — Qex) + (gy - Qcy)z -1 (5

o = _(qx_ qcx) + (qy - q..:y)2 -1 (6)
where qx=Qx/Qpc:u Qy=Qy/QDCys qcx=Q CX/Qpcxs qcy=QCY/Qpcy- Qpr’ Qpcy denote the full
plastic strength in principal directioms, and Q.x, Qcy denote the translation
components of the yield locus in principal directions. Due to the flow rule

of v.Mises, the plastic deformation increment, {Ax},, lies in the exterior
normal to the yield surface Egs.(5) or (6) at {Q}. Thus it is represented by

{ax}, = {88;/3QF A, A >0 (i=1or 2) @)
T
where {Ax}p = {Aup, Avp}, {803/3Q} = {361/3Q,, 361/3Q,}
The definition of a Ziegler-hardening material is completed by assuming that
the yield surface moves in the direction of the vector CP connecting the
center of the yield surface with the stress point as shown in Fig.7 (Ref.4).
It is represented by

{8Qc} =1 ({Q} - {QeH), u >0 (8)
where {Q}" = {Qx, Qy}, {Qc}” = {Qexs> Qeyl

Incremental Force-Displacement Relationship

By using the above assumptions, the incremental force-displacement
relationship may be obtained as follows:

- (1 [Kel{324/3Q3{3%1/3Q}" [Ke
{aQ} = ([Ke]l - (1-1) {a¢i/;Q}3[Ke]%3¢3iaé} . Y{ax} 9
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where [Ke] is known as elastic matrix, and r denotes the work hardening
coefficient. The incremental translation of the yield surface is given as
follows;

_ {8%1/3Q}7{AQ}
The difference in the work hardening coefficient between the strong axis
bending and the weak axis bending is taken into considerations, and the
corresponding uni-axial shear-displacement relations in each direction are
the bi-linear model shown in Fig.8. It is assumed that the work hardening
coefficient under the bi-axial loading, r, varies according to the loading
point on the yield function as follows;

r = /(rycos 8)% + (rysin 8)2 (11)

where e=tan‘1((Qy—Qcy)/(Qx—QcX)), ry and ry, the work hardening coefficient in
the weak and the strong axis bending direction. The numerical analyses using

this model were conducted on the same columns as used in the on-line analyses.
For numerical integration of the equations of motion, the linear acceleration

method was adopted, where the time increment was set 0.001 second.

RESULTS OF ANALYSES

Results of On-line Analyses

Some results are selected and shown in Figs.9 to 13. The time history of
the response displacements in the weak axis bending plane and those in the
strong axis bending plane on DBC-C-3 are shown by solid lines in Figs.9 and
10, respectively. The restoring force-displacement relationship in the weak
axis bending plane and that in the strong axis bending plane on DBC-C-3 are
shown in Figs.ll and 12. The maximum response displacement in each direction
are summarized in Fig.13. We recognize that the restoring force characteris-
tics loop, especially in the weak axis bending plane, results in very
complicated curves. The large drift in the weak axis bending direction
occured in the case that the response displacement in the strong axis bending
direction became larger than a level shown by a chain line in Fig.13.

Comparison with Computer Analyses

The results of the "pure" computer analysis by Fiber Model are repre-
sented by dashed lines in Figs.9 and 10. The results of the "pure" computer
analysis by Parabolic Model are represented by chain lines in Figs.9 and 10.
The restoring force-displacement relationships by Parabolic Model in the weak
and strong bending planes are shown in Figs.l4 and 15. Comparison with the
results of on-line analysis reveals many similarities.

CONCLUDING REMARKS

The IIS Computer-Actuator On-line System was applied to the earthquake
response analyses of a square single-story frame subjected to the two compo-
nents of earthquake acceleration records. Two computer analysis procedures,
using Fiber Model and Parabolic Model, are developed. The conclusions
obtained are as follows. ‘
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(1) The IIS Computer-Actuator On—line System is ayailable to obtain the
response behavior of frames subjected to the bi-directional earthquake
motions.

(2) The restoring force characteristics in the weak axis bending plane
results in very complicated curves.

(3) The large drift in the weak axis bending direction occured in the case
that response displacement in the strong axis bending direction became larger
than the level, say, 4vpc.

(4) The numerical analysis based on Fiber Model with the tri-linear type
stress-strain relationship is available for estimation of response of H-
shaped steel column to bi-directional earthquake motions. However, this
method takes much time to calculate by computer.

(5) The results of the respomse calculation using Parabolic Model coincides
satisfactorily with the results by the on-line analysis. Even the simplest
model based on bi-linear shear-displacement relationship can predict the
earthquake response behavior fairly well.
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Fig.l A square single-story frame model Fig.2 A lumped mass model
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Table 1 The frame models analyzed
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y 2.05 2.85 0.5 1.5 170.0 -NS
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Fig.8 Uni-axial shear-displacement relation
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