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SUMMARY

Steel beam-columns of box section are tested under the constant vertical
and two-dimensional monotonic or cyclic horizontal loads. Experimental behav-
ior is compared with the results of elasto-plastic and rigid-plastic analyses.
It is shown that the post local buckling behavior of specimens with large val-
ues of width-thickness ratio B/t is well predicted by the rigid-plastic analy-
sis considering the influence of local buckling, and that the conventional
strength formula is too comservative.

INTRODUCTION

In conjunction with the seismic design, a number of investigations have
been performed to make clear the cyclic behavior of structural members and
frames subjected to the combined vertical and horizontal loads, in which the
local and lateral buckling take place. However, the most of them are limited
to the case of wide-flange members, and few researches have been reported on
the inelastic belavior of steel beam-columns of box section. Particularly no
research can be found on the three-dimensional inelastic behavior of the box
members.

The paper presents the results of experimental and theoretical studies on
the behavior of steel beam-columns of box section under the constant vertical
and two-dimensional monotonic or alternating horizontal loads.

TEST PROGRAM

The test specimen is a cantilever column of a cold-formed box section as
shown in Fig. 1, of which material is a mild steel (STKR41 or SS41, Japanese
Industrial Standards). First, the constant vertical load P, and then the hori-
zontal load H are applied to the specimen. Loading apparatus shown in Fig. 2
is designed to satisfy the condition that the following six components of the
displacements at the top of the specimen must be kept free; the axial and two-
directional sway displacements, the two-directional flexural rotations, and the
torsional rotation [1]. As the experimental parameters, the width-thickness
ratio B/t, the vertical load ratio n=P/Py and the direction of the horizontal
load o are selected, and they vary as follows; B/t =22-47, n=0.1, 0.3, 0.5
and o =0°, 15°, 30°, 45°. The loading program employed for the horizontal load
is as follows: Specimens in Series I are subjected to basically the monotonic
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horizontal load, and one cycle of reversed loading is applied at the large
amplitude of plastic deflection. Specimens in Series II are tested under the
cyclic loading, where the amplitude of displacement @ (see Fig. 1) is increased
by 2/3 % of the column height £ in a stepwise manner every four cycles of load-
ing completed. The specimen name is indicated in the form of [A]- BCID] - [EF,
where [A! stands for series name, TBC] width~thickness ratio of column section
B/t , [D] vertical load ratio (n= 0.1, 0.3 and 0.5, when D=1, 3 and 5 respec-
tively) and [EF| direction of the horizontal load &. Dimensions of the cross
sections are shown in Table 1, together with the width-thickness ratio and the
material. Forty eight specimens are tested.

THEORETICAL ANALYSIS

Two types of the theoretical analyses are performed to obtain the load-
deflection curves of the cantilever beam—columns under the monotonic uniaxial
bending; the rigid-plastic analysis considering the influence of local buckling,
and the elasto-plastic analysis taking the spread of plastic zone into account.

Rigid-Plastic analysis Deterioration of the restoring force of the box
steel beam-columns is mainly due to the local buckling, since the lateral buck-
ling does not take place. Rigid-plastic analysis based on the technique used
for the wide-flange member in Ref.[2] is performed to investigate the post
local buckling behavior.

The deformed configuration of the cantilever column at the post local
buckling state is idealized as shown in Fig. 3, and the problem is how to
obtain M -0 relations at the plastic hinge. By assuming the local buckling
mechanism as shown in Fig. 4, the principle of virtual velocities can be
written as follows[2]:

M=-P (n-0.5)d+Dp/0 (1

where M denotes the applied moment at the plastic hinge, P the constant verti-
cal load, nd the distance between compressive flange and neutral axis, d the

web depth, © the virtual angular velocity of the plastic hinge, and Dp the rate
of internal energy dissipation. The prime assumptions to estimate the value of
Dp appearing in Eq. (1) are as follows: 1) Deformations are small. 2) Relative
strains at the plastic hinge are proportional to the distance from the neutral
axis. 3) Plate elements are in state of the plane stress. 4) The material has
a rigid-perfectly-plastic characteristic conforming to the yield condition of
von Mises.

The value of Dp is dependent on 4 variables Z, ¥, n and §g (see Fig. 4)
that define the form of the local buckling mechanism, and therefore the resist-
ing moment M in Eq. (1) is also dependent on them. Based on the plastic upper
bound theorem, the minimum resisting moment among the values computed by Eq. (1)
gives a correct solution. In order to simplify the numerical analysis, it is
tacitly assumed that the values of T and ¥ which make the moment minimum when
0/0pc =5 are valid for other values of 0/@pc, where Opc denotes the elastic
limit rotation. Moment-rotation relation is obtained by repeating the compu-
tation of the moment for a given value of §g.

Elasto-Plastic Analysis In addition to the rigid-plastic analysis, the
elasto-plastic analysis is performed to investigate the behavior of beam-
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columns in the absence of the local buckling. First, the moment-curvature
relation is established from the Bernoulli-Euler hypothesis, based on the multi-
linear stress-strain relation which idealizes results of the tensile coupon
test. Deflection is then computed by integrating the curvature which is defined
by the moment-curvature relation according to the moment distribution. The
numerical computation is a nonlinear, iterative task.

RESULTS AND DISCUSSIONS

Behavior under Uniaxial Bending Examples of the load-deflection relations

of Series I are shown in Figs. 5 and 6. In Fig. 5, the experimental results

are shown by solid lines with circles, and the results of the elasto-plastic
analysis and the rigid-plastic analysis are shown by dash-dot and dash-dot-dot
lines, respectively. In specimens of B/t equal to 47, the result of the elasto-
plastic analysis considering the influence of residual stress is shown by a
broken line. Experimental curves are compared in Fig. 6. Definition of the
symbols used is given in Fig. 7.

In Fig. 5, the points of flange and web local buckling observed initially
are marked by ¥ and y, respectively. It is observed from the test results that
a considerable deterioration of the restoring force starts at the occurrence of
the web local buckling induced after the flange buckling. Some specimens with
large value of B/t can not attain the strength given by the mechanism curve,
which is obtained from the second order plastic analysis by assuming a plastic
hinge forming at the base of the beam-column. This phenomenon is more pro-
nounced with the increase in the value of the vertical load ratio n. The dete-
rioration of the restoring force becomes more apparent as the value of B/t be-
comes large, but an important difference is not observed in specimens with the
value of B/t over 31. As to the theoretical results, the experimental behavior
can be predicted to some degree by the elasto-plastic analysis up to the maximum
load, while the rigid-plastic analysis considering the influence of local buck-
ling can estimate the behavior of specimens with large value of B/t after the
maximum load attained. Figure 8 shows the experimental results of cyclic behav-
ior. The load carrying capacity decreases in each cycle of loading after the
occurrence of local buckling. As to the influence of B/t and n, the tendency
similar to the case of the monotonic behavior mentioned above is observed.

Figure 9 shows the relations between the nondimensional strain ecr/ey at
the occurrence of local buckling and (B/t) VGY/E, where Oy denotes the yield
stress, €y the yield strain, and E Young’s modulus. Figure 10 shows the rela-
tions between the deformation capacity R defined in Fig. 11 and (B/t)‘/0y7E.
With the increase in the value of (B/t) YOy/E, the strain €.y and the deforma-
tion capacity R become small. It seems in Figs. 9 and 10 that the deformation
capacity is considerably small when the local buckling takes place within the
range of €cr/ey less than 2.

Behavior under Biaxial Bending Examples of the load-deflection relations

of specimens subjected to biaxial bending are shown in Fig. 12, and the deflec-
tion paths are shown in Fig. 13. Definition of symbols appearing in figures is
given in Figs. 1 and 14. In Fig. 14, the mechanism curve is obtained without
regarding the influence of local buckling. As observed in the case of uniaxial
bending, Fig. 12 shows the drastic deterioration of the restoring force in the
range of large deflection, which is caused by the successive buckling of plate
elements subjected to compression.
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Strength Formula Figure 15 shows the experimental results of the maximum
horizontal loads compared with the values computed by a strength formula given
in Ref.[3],

M. Cy M
N Cx Mx + vy = 1.0 )

Ner N _ N
(1= o) Mpx (1= 7 ) Moy

in which N denotes the axial load, Ner the critical load, Ne Euler buckling
load, M the applied moment, Mp the full plastic moment, and C is the factor
computed in relation to the moment gradient. Subscripts x and y indicate quan-
tities computed about x- and y-axes, respectively. The value of Ner is computed
from the column curve formula in Ref.[3], taking the effective length equal to
2%. Examples of m-n and mx-my relations are shown in Figs. 16 and 17, respec-
tively, in which the definition of symbols is given in Fig.18. 1In Figs. 16 and
17, the strength given by Eq. (2) (dash-dot line) and the full plastic strength
(broken line) are shown together with the experimental results. The ratio of
the experimental maximum load Hmax to the strength Hf computed by Eq.(2) ranges
from 0.72 to 2.3. 1In the case of the uniaxial bending, the strength formula,
Eq. (2) , gives fairly well, conservative estimate to the experimental maximum
loads, except for the specimens of B/t equal to 47. It seemes in Fig. 15 that
the strength formula is too conservative in the case of biaxial bending, and
this conservative discrepancy becomes larger with the increase in the vertical
load and the direction of the horizontal load . The value of Hmax/Hf is not
much affected by the value of B/t. Im Fig. 17, My-My Curves obtained by con-~
necting the experimental results resemble the interaction curve for the full
plastic strength, and thus the linear interaction formula, Eq. (2) , which is
extended from the formula for the uniaxial bending, cannot estimate the maximum
loads of beam-columns subjected to the biaxial bending in a similar degree of
accuracy for the uniaxial bending cases.

CONCLUSIONS

(1) In specimens subjected to uniaxial bending, a considerable deterio-
ration of the restoring force starts at the occurrence of the web local buck-
ling induced after the flange buckling, and the deterioration becomes drastic
as the value of B/t increases.

(2) In specimens subjected to biaxial bending, the direction of sway does
not coincide with the direction of the horizontal load o after the local buck-
ling takes place, particularly when the vertical load is large.

(3) The conventional strength formula used in the plastic design of steel
structures is too comservative in the case of biaxial bending.

(4) Experimental behavior of specimens with large value of B/t is well
predicted by the rigid-plastic analysis considering the influence of local
buckling.
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Column Section (mm)| B/t [ Material
BxDxt
0 -150x150x3.2 47 §S41
0 -150x150x4.5 33 | STKR41
0 -150x150x6.0 25 | STKR41
£ -100%x100x3.2 31 | STKR41
O -100x100x4.5 22 | STKR41
B=width
D= depth

t = thickness
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