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SUMMARY

Seismic isolation is one of the oldest attempts to reduce effects of
the earthquake ground motions on buildings and structures. In the past
several years new ideas in modern construction have been theoretically
and experimentally investigated by scientists and engineers in order to
develop systems of seismic isolation supporting elements suitable for
practical application.

Modern multi-span bridge structures, due to prefabricated construc-
tion of the super structure and inadequacy of the existing supporting
elements, are exposed to severe damage during strong earthquakes. Parti-
cular simple connecting and supporting element has been developed and
tested at IZIIS, Skopje to serve as seismic isolation and energy absorp-
tion system. Experimental results of the force-displacement characteris-
tics of the supporting elements with testing procedure are presented
and the effect of seismic isolation and energy absorption of these ele-
ments on dynamic response on the simple bridge structure is discussed.

INTRODUCTION

Considering that seismic isolation and energy absorption elements
could significantly reduce transmission of earthquake energy and change
amplitude and frequency content of the expected earthquake ground motion
at the site, simple mechanical element of seismic isolation and energy
absorption has been developed and tested at the Institute of Earthquake
Engineering and Engineering Seismology at the University "Kiril and
Metodij", Skopje (9). Specific force-displacement characteristics of this
element are obtained for elastic and postelastic range of behaviour,
working initially as seismic isolation for controlled range of displace-
ments and in the second stage as energy absorber. This element has been
introduced to a simple bridge structure in order to assess its influence
on dynamic response of the structural system in the longitudinal direction.

FORCE-DISPLACEMENT CHARACTERISTICS OF SEISMIC
ISOLATION AND ENERGY ABSORPTION ELEMENT

Simple mechanical seismic isolation and energy absorption element
(SIA) consists of neoprene pad under the beam and wing elements on the
site of the structural beam connected with the supporting structure
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through steel bar and pair of springs (Fig. 1.). In order to obtain force
displacement characteristics of the developed element quasi-static test-
ing has been carried out on three samples in the scale 1:3, simulating
vertical load at the fixed support and force and displacements time his-
tory along the length of the beam in accordance with the test arrangement
given in Fig. 2. Obtained force-displacement characteristics of the ele-
ment are given in Fig. 3 (a), for the elastic range representing bilinear
elastic relation, and in Fig. 3 (b), for cummulative elastic and post-
elastic range, representing intensive energy absorption part before fail~
ure of the wing elements.

DYNAMIC RESPONSE OF SIMPLE BRIDGE STRUCTURE

Based on experimentally obtained force-displacement characteristics
for the purpose of modeling simple bridge structure with developed STIA
element, in the analysis force-displacement diagram is simplified as shown
in Fig. 4 (a). In the part of bilinear elastic behaviour including neo-~
prene pad, springs and wing elements simplified force-displacement diagram
is following basically experimentally determined relationship. In the part
of the postelastic behaviour of wing elements, representing energy absorp-
tion portion of the SIA element stiffness properties are modelled ideali-
zing experimental evidence for the purpose of simplification of the ana-
lysis.

Structural elements of the simplified bridge structure are taken with
the proportions usually applied in the practice and dynamic response ana-
lysis in the longitudinal direction is performed for the acceleration time
history of N-S component recorded at Ulcinj, Albatros of Montenegro 1979
Earthquake, scaled at 0.1, 0.3 and 0.5 g peak ground acceleration, respec—
tively.

Displacement earthquake response time history of the pier 2 and
pier 1 are given in the upper parts of Fig. 5., considering three diffe-
rent levels of excitation: (a) 0.1 g, (b) 0.3 g, and (¢) 0.5 g with incor-
porated SIA element, and case (d) 0.5 g with simulation of rigid colision
of the superstructure with the abutment beam. In the case (a) with 0.1 g
peak ground acceleration, the system is active within initial elastic
range; in the case (b) with 0.3 g PGA, the system is completely active
within bilinear elastic range and in the initial stage of nonlinear beha-
viour of SIA element; in the case (c¢) with 0.5 g PGA, the system is com~
pletely active in both linear and nonlinear range of the SIA element. In
the lower part of Fig. 5. activated parts of the SIA element are given
for each case separately in different scale.

COMPARISON OF THE DYNAMIC RESPONSE
Comparison of the dynamic response and sectional forces at the bot-
tom of the piers is presented in Table 1. for all considered cases with

SIA element (a, b and c¢) and in the case (d) considering classical solu-
tion for largest PGA. ‘
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Table 1.

Pier () Pier 2,
Force - displace ~ ‘
rce - displacement PGA d : le
characteristics of SIA Case Max. | Max. ' Max. Max. [ Max. | Max.
element ofg displ | shear f.\b.mom. | displ. | shear f. {p-mom.

{cm) (B ltm) (sm} {4 ¢ {(tm)

-

p | | ! |
» I |

— - — - i i
5 ? a 0.1 091 | 585 ' 2923|236 , 19.0 | 1803
H o= i i .
T2 & ; { e
;5 b 03 270 {1740 | 869.8 | 7.18 ? 58.0 | 580.0

IR c 0.5 301 | 1942 | 9710 ] 1222 | 986

cm) | lem)
42 1123|130 | 5.0

986.0

12 1
? ; ¢ d 0.5 7.20 | 464.7 | 23236 | 8.26 66.7 | 667.0

0.4 [18.4] 0.1 | 0.2

From the presented data it is evident that in the case (a) there is
well established control of the entire system in the elastic range, and
in the case (c) there is established appropriate balance of bottom bend-
ing moments in both piers, which in comparison with case (d) of classical
solution is larger more than three times in pier 1 in respect to pier

2 .Based on this simplified analysis it could be concluded that imple-
mented simple SIA element could be suitable for efficient control of da-
mage in small and moderate earthquakes and modification of classical
structural system to more favourable one for large scale earthquakes.

CONCLUSIONS

The selected example of implementation of the seismic isolation and
energy absorption elements in the case of simple bridge structure is pre-
senting the basic idea of the efficiency of these elements in reduction
of the earthquake effects on the considered structural system and crea-
tion of more favourable structural behaviour under earthquake ground
motions. With the developed simple mechanical SIA element there is possi-
bility to establish limited transfer of earthquake forces and control of
displacements of the structural system by which possible control of struc-
tural and nonstructural damage in small and moderate earthquakes could be
achieved and serious structural damage and failure in the strongest earth-
quakes could be avoided.
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Fig. 2. Test model structure and test arrangement;
(a) Plan of test arrangement; (b) Simulated displacements;

{c) Simulated forces
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Fig. 3. Experimental force - displacement diagrams of seismic isolation and
absorption element (a) Bilinear elastic response of neoprene pad,
springs and wing element; (b) Nonlinear response of wing elements
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Fig. 4. ldealization of force - displacement diagram (a)

of seismic isolation and absorption element
(b) Scheme of bridge structure
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