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SUMMARY

The response of seismically loaded, unreinforced concrete gravity dams
is studied taking account of initiation, extension, closing and reopening of
discrete cracks. The aim of the present work is to develop models and compu-—
tational procedures suited for the numerical approximation of these physical
events and for the determination of their influence on the response of the
concrete structure. For this aim a computer program based on the finite-ele-
ment method is developed. The program is, at present, restricted to two-di-
mensional structures under plane-stress conditions. The response of two con-
crete gravity dams to horizontal earthquake excitation is examined. In general,
larger displacements but smaller stresses result when compared with a similar
calculation which does not allow for cracking.

INTRODUCTION

The behavior of concrete dams due to seismic loading is a matter of pub-
lic concern because the impounded water, in case of a dam failure, represents
a severe threat to the environment. One important parameter for the safety of
concrete dams under seismic loading is the non-linear cracking phenomenon oc-
curring when the tensile strength of the material is exceeded. To study the
effects of this physical event on the response of the structure, a two-dimen-
sional computer program, based on the discrete crack formulation in a finite
element mesh, is developed. First applications of this program are presented
here.

COMPUTATIONAL PROCEDURE

The concrete structure is described using bilinear, quadrilateral or trian-
gular, isoparametric finite elements under plane stress conditions. The dis-
crete crack formulation involves the separation of adjacent elements, intro-
ducing additional nodal points and hence new degrees of freedom. The associat-
ed numerical problems (increased bandwidth of the structural matrices) are
avoided through the selectionof an explicit integration procedure for the
equations of motion (Ref. 1).

(1) Research Assistant, Institute of Structural Engineering,

Swiss Federal Institute of Technology, Ziirich
(II) Engineering Comsultant, Structural Engineering AS, Oslo, Norway
(III) Professor of Civil Engineering, Institute of Structural Engineering,

Swiss Federal Institute of Technology, Ziirich

95



Initiation and extension of cracks

For the initiation of a crack, the equivalent tensile strength criterion
based on the approximated biaxial failure condition of concrete (Ref. 2) is
applied. As long as one of the principal stresses is a tensile stress, cracking
of the concrete is assumed. At present, the same procedure is also used for
the extension of cracks even though the discrete crack formulation is suited
for alternative approaches. For the dynamic response of concrete structures,
reliable and economically feasible methods for the modeling of discrete crack
propagation are controversional.

To achieve a relatively simple algorithm, it is assumed that the crack
initiates from the node of the outer surface of the structure which is next to
the governing integration point (node A, Fig. 1). Further, it is presumed that
the crack will propagate perpendicularly to the principal tensile stress
through the entire element to point E. This direction, represented by the an-
gle 0, does normally not coincide with the original element mesh. Therefore,
in order to allow for crack propagation along inter—element boundaries, the
mesh is updated either through distortion (node C is moved to E, Fig. la) or
combined distortion and division (node D is moved to E and the quadrilateral
element i divided into the triangular elements i and i', Fig. 1b). In subse-
quent time steps, new cracks develop in the same manner whereby already existing
cracks represent an extension to the outer boundary of the structure.

The structural properties associated with node A in the original mesh are
henceforth split between A and A'. Before continuing the temporal integration,
the crack width as well as the shear deformation are equated to zero so that
the new node A' initially is given the same amount of displacement as A. More-
over, the displacements, velocities and accelerations of point E are recalcu-
lated according to the inter—element shape functions. When cracks close, the
hypothesis of a perfectly.plastic impact is assumed to apply for the determi-
nation of the motion of the nodes involved. A closed crack reopens as soon as
a net tensile stress develops across the crack.

Crack element

Between elements separated by a crack, so-called crack elements are intro-
duced. These model the roughness of the crack surface and:serve to determine
the stress transfer by aggregate interlock resulting from relative displace-
ments of the two crack surfaces. According to tests, the crack width, the maxi-
mum aggregate size and the loading history are important parameters for the
stress transfer.

The crack width is the governing factor for the apparent stiffness and load
transfer capacity. It is modeled, as shown in Fig. 2, with a set of parallel
springs representing layers of the crack surface. The number of springs n and
the maximum width Ymaxs for which contact still can be achieved, are determined
through type and size of the aggregate. For a specific relative displacement u
and a specific crack width w, a certain number of springs mare activated (Fig.
3). Thus, through an adequate choice of all the spring stiffnesses, crack—width
dependent shear transmission can be modeled. For the results presented here
all crack-width dependent numerical values are determined according to a pro-
cedure valid for initial loading (Ref. 3).

The influence of the loading history for each individual spring is approxi-
mated as indicated in the stress-displacement relationship of Fig. 4. As the
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unloading stiffness is larger than both the initial and the reloading stiff-
nesses, a permanent shear displacement, which in general will be different
for each spring of the crack element, will result.

Two conditions for the closure of a crack are incorporated. The first,
namely the crack width w less than or equal to zero, is obvious. The second
condition is a function of the remaining shear deformations and equivalent
layer thicknesses of the springs, and the decreasing crack width and the rela-
tive displacement u of the crack surface (Ref. 1). The crack element closes
as soon as one of the conditions applies.

Interaction with adjacent media

To demonstrate the basic features of the crack algorithm, some computa-
tions are performed neglecting the fluid-structure and the soil-structure in-
teraction. With these calculations as a reference, simplified approximations
to the interaction phenomena applicable to the time domain are introduced in
order to assess their influence on the cracking behavior.

Westergaard (Ref. 4) developed a basic concept of representing the effect
of the reservoir on the earthquake response of a gravity dam. This formulation
is frequently used in the seismic analysis of such dams. For that reason and
in spite of its limiting assumptiomns, the approximate added mass concept,
which is the usual way of representing the Westergaard solution, is adopted
here. The most important assumptions of this formulation are a rigid dam with
a vertical upstream face, two-dimensional modeling of the structure, incom-
pressible fluid, a reservoir which extends to infinity (radiation damping),
neglecting of surface waves (lower frequency bound), and excitation frequencies
lower than the fundamental frequency of the reservoir (upper frequency bound).

The flexibility of the soil is approximated with frequency-independent
linear springs and viscous dampers (dashpots). The expressions for a rigid
strip foundation located on the top of an elastic half plane are derived in
Ref. 5. The horizontal stiffness and damping coefficients are evenly distribut-
ed between the foundation nodes. The vertical springs and dampers introduced
at the foundation nodes represent both vertical and rocking motions: A dis-
tribution of the vertical springs which accurately simulates the correct
stiffness of both is not possible. In the analyses described here, the rocking
stiffness is deemed more important and therefore modeled exactly, whereas for
the vertical stiffness twice the theoretical value results.

APPLICATIONS

To test the algorithm described above, two specific types of concrete grav-
ity dams are analized. As the aim of the analyses is to assess the influence
of the different parameters on the response, the cross—sections are somewhat
simplified. Cross-section Type A, similar to the Koyna dam, with a relatively
large mass at the top is shown in Fig. 5. It is selected for calculation be-
cause it is one of the few dams where seismic cracking is reported (e.g. Ref.
6). The other one, Type B (Fig. 6), is a typical triangular cross-section
which is frequently found in the Swiss Alps. Its special characteristic is the
considerable height of almost 300 m. For both types, the material constants as
well as the finite element mesh are indicated in the figures. In contrast to
reality, the material constants are assumed to be valid for the entire struc-
ture. In addition, neither mutual interaction of adjacent blocks nor any ef-
fect of construction joints are considered. The element mesh is chosen arbi-
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trarily. If nothing else is specified the structures are assumed rigidly sup-
ported at the base. The earthquake excitation is approximated with the hori-

zontal time history of figure 7, scaled to the approximate maximum accelera-

tion value. Synchronous excitation (vertically propagating waves) is assumed.
For the present study, novertical excitation is comsidered.

Figure 8 shows the development of the crack pattern for Type A at select-
ed time steps. The first crack initiates near the fixed base on the upstream
side. At a later stage, when the upper part of the cross-section moves to the
left, the second crack sequence is formed near the point of discontinuity. In
subsequent movements cracks are extending from this point, and they finally
reach the upstream face. Type B (Fig. 9) shows a somewhat different behavior.
Dufing the first larger movement of the dam to the left, caused by the first
three pulses of the acceleration time history, the cracks propagate through
the structure leaving an upper part isolated. In the following oscillation to
the opposite side, a crack in the lower part of the upstream face develops.
Figures 8 and 9 demonstrate that the overall crack patterns of the two types
are similar. For comparison, the final crack pattern of Type A for an empty
reservoir is depicted in figure 10a. In contrast to the case with a full res-
ervoir, no cracks on the upstream side result, and hence no penetration of the
cross~section takes place. Figure 10 also gives an indication of the influence
of the aggregate interlock phenomenon. For the overall results including crack
pattern the comnsequences of crack element modeling seem to be minmor. Also
for Type B (Fig. 11), no crack occurs in the lower part of the upstream face
for the empty reservoir. The upper cracks, however, still penetrate the cross
section, and this even occurs at an earlier stage of the time history. Figure
12 shows a comparison of the horizontal displacement at the dam crest between
a non-linear calculation which allows for cracking and a linear one which does
not. The crest undergoes larger displacements when cracking occurs, and also
the apparent period of the oscillation is somewhat increased. In figure 13, the
same comparison is carried out for the maximum principal stresses. The stres—
ses are taken froman element near a crack. After the crack has developed, the
tensile stresses fi are, of course, noticeably reduced. The consideration of
soil-structure interaction generally reduces the amount of cracks in the struc-—
ture, when the ratio of Young's modulus of the foundation Ef to Young's modulus
of the structure Eg is lowered. The overall displacements, however, normally
increase (Fig. 14). In figure 15, finally, the influence of the reservoir omn
the horizontal displacements is demonstrated. For the case of Type A the reser-—
voir water leads to a larger apparent period and to larger displacements. De-
spite the complete separation of the upper part of the structure no collapse
of the dam results.

CONCLUSIONS

Both types of dams examined here experience cracking for appropriate val-
ues of the parameters. However, the influence of certain parameters on the
response is different for the two types. It is found that seismic cracking
does not necessarily lead to a collapse of the dam. In general, larger dis—
placements but smaller stresses result as compared to a calculation which
does not allow for seismic cracking. Based on the experience gained so far with
the algorithm selected, further studies with refined modeling of the adjacent
media should be donme.
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Fig.10: Final crack pattern, Type A,reservoir empty.
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