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SUMMARY

To predict the response of concrete structures subjected to seismic
excitation, constitutive models of concrete under cyclic loading are
necessary. To develop theoretical models, experiments were conducted on
confined concrete subjected to stress as well as incremental strain
cycling. The concept of envelope curves was observed to be valid for con-
fined as well as unconfined normal weight, high strength and light weight
concrete provided the rate of loading is sufficiently rapid so that cyclic
creep is not critical.

A rheological stochastic model is proposed to predict the response
of confined concrete subjected to any arbitrary loading history. The
three parameters of the model can be calibrated from the envelope curve,
and no prior cyclic tests are necessary.

INTRODUCTION

Concrete subjected to cyclic loading represents an important class of
problems in structural engineering when designing structures such as
buildings subject to earthquake or wind loads, bridges subjected to
vehicle loading and offshore structures loaded by sea-waves.

To predict the ultimate behavior of reinforced and prestressed con-
crete structures subject to this kind of loading, constitutive relation-
ships of concrete under cyclic loading are needed. Plain concrete sub-
jected to cyclic loading exhibits internal microcracking, cyclic creep
and path dependency [1]. A constitutive model that would incorporate all
the known characteristics of concrete is not available today. Instead,
there are a number of models which simulate with acceptable accuracy the
response of concrete to particular types of loading. For example, design
of columns and beams can often be handled by modeling the concrete be-
havior in uniaxial loading. This important problem is simplified by the
concept of the "envelope" curve which is a curve in the g-¢ space that is
never crossed by any uniaxial loading history. It has been postulated
that the envelope is unique for a given type of concrete and that it
approximately coincides with the stress-strain curve obtained under
monotonically applied loading [2]. 1If this hypothesis is valid, then the
complete stress-strain curve provides a basis for a rational and simple
analysis for the response of many types of concrete structures subjected
to seismic excitation [3, 4, 5].
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The validity of the concept of the envelope curve was primarily
based on data from plain, unconfined concrete. The purpose of the
research reported in this paper is to examine the validity of the concept
for spirally confined concrete and to develop an analytical model for the
envelope curves as well as for the response of unconfined and confined
concrete subjected to cyclic loading.

EXPERIMENTAL PROGRAM

To examine the validity of the envelope concept for confined normal
weight and lightweight concrete, 127 concrete specimens were tested in
monotonic and cyclic loading under two different strain rates (32 ustrains/
sec and 15000 ustrains/sec). [6, 71.

The specimens were 3x6 in. cylinders without longitudinal reinforce-
ment. The confined specimens had practically no cover and the spiral was
fabricated from 1/8 in. diameter wires with a yield strength of 60 ksi
(413 MPa). The amount of confinement was changed by varying the spiral
spacing; two different spacings 1 and 1% in. were used. Note that the
volumetric ratio of 1 in. spacing is more than.the minimum required by
the American Concrete Institute for earthquake loading and for concrete
strength about 6000 psi (41MPa) whereas the 1% spacing provides less
volumetric ratio than the ACI requirement [ACI-318-77, Sec. A.6.5.2].

The specimens were loaded in a closed-loop testing machine. During
strain cycling a fixed amount of strain was imposed during each cycle.
A typical stress-strain curve obtained for this type of loading is shown
in Fig. 1. During stress cycling the specimens were repeatedly loaded
between a fixed value of maximum and minimum stress (Fig. 2).

From the strain controlled cyclic stress-strain curves an envelope
curve can be drawn (Fig. 1). A range of envelope curves was obtained
from the results of cyclic loading of identical specimens and were then
compared with the range of the complete stress-strain curves of the
corresponding control specimens obtained from the monotonically increasing
loading (Fig. 1). It can be seen that the range of these two sets of
curves are essentially the same. Similar results were obtained from other
tests of normal and lightweight concrete and also of various strengths
(fé) and spiral spacing as well as unconfined specimens [6].

A comparison of stress controlled cyclic stress-strain curve with
the monotonic curve of a confined normal weight concrete is shown in
Fig. 2. Point A in this figure is defined as the largest value of strain
when it was still possible to apply the programmed maximum stress value
and point B is defined as the value of strain when the maximum stress was
95% of the programmed value. Comparison of these two points with the
range of monotonic curves is shown in Fig. 3 where various ranges of
loading employed are also reported. The behavior of specimens with
different concrete strength (fé) and confinement as well as of lightweight
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concrete was similar and thus, it was concluded that the envelope concept
is valid for stress controlled tests and high strain rates. For low
strain rates, however, it was found that for some specimens the failure
strain exceed the envelope (Fig. 4). Similar phenomenon was also reported
by Maher and Darwin [8] and is probably due to the creep deformations and
incremental damage. 1In earthquake, however, the strain rates are

much higher than the strain rates of these slow tests [5]. Therefore, for
all practical purposes the concept of envelope curve seems to be valid for
unconfined as well as confined concrete and also for lightweight concrete.

ANALYTICAL MODEL

Based on the concept of envelope curve many researchers have de-
veloped models to predict cyclic stress-strain curves [9, 10]. Most of
these models require several sets of equations and a number of constants
which may not have any physical meaning.

In this investigation a rheological, stochastic model is proposed for
uniaxial cyclic loading. The three constants needed to calibrate the
model can be determined from the monotonic stress-strain curve. Use of
rheological models to predict hysteretic behavior of metals was proposed
by Timoshenko [11]. He used a model consisting of Jenkin's elements (an
elastic spring in series with a Coulomb element) connected in parallel.
Similar models were used by other investigators to study the dynamic be-
havior of metals [12] and to predict the response of concrete and rocks
subjected to cyclic loading [13, 14].

Four-Element System

The principal characteristics of the proposed model can be easily
understood by considering a four element system as shown in Fig. 5. Each
element consists of a spring and a slider connected in series and the
elements are connected in parallel. The c-& curve of a typical element is
shown in Fig. 5b and it is characterized by three parameters; the spring
constant K, the strain n which is the elastic limit of the element and
the strain 6 which is the total plastic strain that the element is allowed
to undergo (in either direction) and after which the element fractures
and loses its capacity to resist deformation. The B-parameter is as-
sociated with the irreversible work consumed by the slider.

At any strain (e) the stress of the system is equal to the sum of the
stresses of those elements that have survived the given loading history.
In Fig. 5c¢ are shown the o-¢ curves of the four elements subject to a
loading history and in Fig. 5e is shown the respomse of the system. As
the elements enter their plastic stage the system exhibits knees (non-
linearities, e.g. points 1, 2, 7, 8). If the loading is monotonic the
elements break progressively and we have a progressive drop of the system
stress (strain softening). In cyclic loading when elements break we also
have a drop in the system stress (Fig. 5e, point 9) and as a result, the
system does not reach the point at which the unloading had commenced and
the reloading branch meets the unloading branch at a lower point (common
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point). Due to progressive failure of elements we also have a decrease
of stiffness (stiffness degradation). With increasing the strain, the
stress tends to the envelope curve (dotted line in Fig. 5e).

In a system with N elements the spring constant of each element is
K = E /N where E is the modulus of elasticity of concrete. The other
two parameters vary from element to element and they are drawn from two
independent populations each with an expoaential distribution, in a ran-
dom fashion. The n-parameter of the i-th element is

2n (1 - p) (1)

o=

ﬂi—

where p is a random number (0<p<l) drawn from the p-population (all values
of which are equally likely), and b is the constant of the exponmential dis-
tribution of the n-population. The 6-parameter of the same (i-th) element
is
6. =-<gn (1-p) )
i a
where p is another random number from the same p-population and a is the
constant of the distribution of the 6-parameter. The n- and O-parameters
of the four-element system are shown in Fig. 5d. Note that the system is
defined by three parameters, a, b, and K (that is Ec).

Continuous System

It is seen that the simple system of four elements captures all the
main characteristics of concrete behavior. The discontinuities of the
model response can be eliminated by increasing the number of elements. In
the limit, when the number tends to infinity, we have the continuous case
with spring constant dk = Kdp » where dp is an infintesimal interval in the
p-population mentioned earlier. The elements can be arranged according to
their ascending order of their n-parameters (Fig. 6). For a given strain
€, the elements having n > € behave elastically; those are the elements
with p values varying between 1 - ¢ °% and p = 1 (Fig. 6) and the stress
contribution of these elements is given by:

1 1

g = Kedp = Ke j dp = Kee—be

3)
1-exp(-be) 1-exp(-be)

The elements with n < € have yielded and are in their plastic stage.
However, some of them may have already broken at this strain and, there-
fore, they do not make any contribution to the systems resistance.

We define the density A(p) as the ratio of the active elements to the
total number of elements in a small interval Ap (Ap - dp) as shown in
Fig. 6a. To determine the number of elements that are active in Ap we
rearrange these elements within Ap acéording to the ascending order of
their 6-parameter as it is shown in Fig. 6b. (Note that within Ap the
n-parameters have approximately constant value which tends to n(p) as 4p
tends to infinetisimal dp). Since the two parameters n and 6 are inde-
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pendent, the distribution of & in the interval p is the same as the dis-
tribution of the population from which & was drawn (S-population), that
is, exponential. From Fig. & it is clear that the elements that are
active are those that have n + & > &, therefore, the density is

[

Ap ip,
=1--= (4)
, o (&)

but from Fig. 6b it is seen that

A(p) =

d

ap
2 -a/b -
&p=1—(1—p)"‘/eas (5)
and finally
Ap) = (1 - py72/P g7Ee )

The density variation is shown in Fig. 6.

It can be shown that the density A(p) is the probability that an
element has to survive a given strain e. Obviously the density of the
elastic elements is A(p) = 1 (Fig. 6).

The stress contribution of an element in its plastic stage is
do = En dp and the total contribution of the plastic elements that are
active is

l-exp(-be)
g_ = A(p) Kn(p) dp
P 0

and substituting A(p) and n(p) from Egs. 6 and 1 respectively, we find

—ae 1-exp(-be) ;
Ke [ -a/b
o= - 1 -p) tn(l - p) dp
P b 0 (
7)
Ke 2¢ b (a-b)e b
< ey e e * o |

The total stress of the system in monotonic loading is given by the
H = + .

sum of Eqs. 3 and 7: © Oe Gp

The derivation of the system response subject to cyclic loading is,
in principle, possible but more complicated due to discontinuity of the
element ¢ - € curve. One alternative is to comstruct a system with
adequately large number of elements and by a computer porgram to keep )
track of each element's response. The response of such a system comsisting
of three hundred elements is shown in Fig. 7 which is a simulation of
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the experimental data of Fig. 1.

The Proposed Rheological Element

To overcome the difficulty stemming from the discontinuity, an
element with continuous stress-strain curve was introduced. The mon-
otonic ¢ - & relationship of the element is

g = Kn(l - e ke

) (8)
with an asymptote at o = Kn. The response of the element to cyclic
loading is shown in Fig. 8. The n-parameter in Eq. 8 is a random para-
meter with exponential distribution as in the elastic-plastic elements.
The second parameter of the new proposed element is the critical work
(Wer) which is the work that the element absorbes before it breaks (Fig. 8)
and has an exponential distribution similar to 6-parameter. With these
new element it is possible to derive explicit formulas for the cyclic
response of a continuous system subject to any arbitrary loading history.
The formulas are in closed form and of the total strain type. The res-
ponse of the system consisting of an infinite number of proposed elements
subjected to the same loading history as the experiment of Fig. 1 is
shown in Fig. S. More details of the derivation of the formulas giving
the stress in loading and unloading during any cycle are given in Ref. 15.
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