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SUMMARY

This study describes a computer-aided technique in which a
simplified stick-type model is generated which closely approximates the
story translational stiffness of almost any given two-dimensional
frame-wall model. The simplified model is made of one-dimensional
bending elements and has 4n-4 degrees-of-freedom for n stores. The
simplified model can be used to replace a complex two-dimensional
frame-wall model in a three-dimensional building analysis program in
which the horizontal diaphragms are rigid in plane. Use of the
model allows the reduction of computational effort and the transfer of
finite-element modeling results to three-dimensional programs using only
linear elements.

BACKGROUND

The analysis of multi-story buildings by computer using
three-dimensional elastic models is now common in professional practice.
Most buildings consist of planar frame-walls cantilevering from a
foundation and connected at regular story levels by floor diaphragms.
Three-dimensional elastic models are used in order to determine the
behavior of these existing or proposed buildings. By the use of
computers, elastic building models of great complexity and indeterminacy
can be constructed and solved. An analysis using available proven
programs readily provides member forces and deformations, story
displacements, foundation reactions, and dynamic behavior of structures
subjected to vertical or lateral forces.

One type of computer modeling program is the general
three-dimensional finite element elastic analysis program, such as SAP
or NASTRAN. Analysis of buildings with this type of program involves
modeling all the structural elements as assemblies of ome, two or three
dimensional elements. These programs are capable of quite accurate
analysis of elastic behavior due to their completeness. This type of
model analysis can be time-consuming to prepare and execute, and is
often considered unnecessarily expensive for use in building design.

A second type of elastic modeling program is written especially for
building analysis. These programs make simplifying assumptions which
greatly reduce input data preparation and computational effort. Program
TABS (Ref. 1) is of this type. The assumptions usually made are that
horizontal diaphragms are rigid in plane, all lateral loads are applied
at floor levels, girders are constrained from axial deformatioms,
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intersecting frame-walls are considered to act independently, and
members are modeled as either one-dimensional elements or as two-
dimensional infill panel elements with restricted degrees-of-freedom.

A complete multi-story building analysis with either type of
program would yield the following data for each load case:

1. Base shear, base overturning moment, story shears, and story
overturning moment for each frame-wall.

2. Internal forces in members within each frame-wall.

3. Displacement and rotation of the building at each floor, and
translational displacement of each frame-wall at each floor.

4, Shear forces in the horizontal diaphragms.
5. Dynamic mode shapes and frequencies (independent of loading).

6. Time-history deflections and frame forces for a given
earthquake record.

Although each frame-wall model in the second type of program
typically is made up of many elements interconnected to allow numerous
degrees—-of-freedom, the behavior of each frame-wall model in relation to
the total three-dimensional model can be totally described by the
flexibility or stiffness matrix of its story translational degrees-of-
freedom. Thus, if a frame-wall model having an identical story
translational flexibility were substituted in the three-dimensional
model for the original, the results in Items 1 and 3 to 6 above would
remain unchanged. To obtain the frame-wall member forces (Item 2), one
could impose the story translations or forces from the three-dimensional
model onto the original frame-wall model.

BASIS FOR SIMPLIFIED MODEL

The story translational flexibility matrix of a frame-wall can be
found from the complete stiffness matrix of a frame-wall by a series of
matrix operations known as static condensation (Ref. 2). It may also be
obtained by imposing unit story translational forces on the frame-wall
model and noting the story translations. Most available building
analysis programs do not allow a condensed matrix as described above to
be directly entered. The programs require that a model of an
interconnected assembly of elastic elements be entered.

This study describes a computer-aided technique in which a
simplified stick-type model is generated which closely approximates the
story translational stiffness of almost any given original frame-wall
model. The simplified model is an interconnected assembly of one-
dimensional bending elements and has 4n-4 degrees—of-freedom (DOFs) for
n stories. The model can be centered in the place of a frame-wall to a
three-dimensional program of the second type described above.
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There are several advantages to using the simplified model. When
the simplified models replace complex frame-wall models with numerous
column, spandrel and panel elements, considerably fewer degrees-of-
freedom are used in the three-dimensional model, lessening the
computational effort to solve that model. In seismic rehabilitation
design, existing frame-walls which will remain unchanged maybe entered
as simplified models, while the complete models of proposed additional
or altered existing frame-walls are successively entered until
acceptable forces and displacements in all frame-walls are obtained.
Highly irregular existing or proposed frame-walls, known to be difficult
to accurately model using one-dimensional and panel elements, may be
modeled first using finite elements to more accurately determine their
story translational flexibility. A simplified model approximating this
flexibility can then be generated for use in the three-dimensional
model. Final story forces or displacements to the simplified model, as
determined in the three-dimensional analysis, can then be applied to the
original frame-wall model to find element forces.

The simplified model used in the program was originally suggested
and used by Aoyama (Ref. 3). This model was called the "FB" model, and
is shown in Figure 1. A simplified version of the Aoyma "FB" model was
conceived which is more suitable for modeling with linear bending
elements. This model is shown in Figure 2. In this simplified model,
the fixed end outside columns simulate shear deformations, in that their
end moments are uncoupled from the columns above and below. The interior
hinged end columns act as bending elements, in that their end moments
are coupled to their extensions above or below. The forces at any story
level in the model are coupled to up to four other story levels. With
the DOFs numbered as shown, the stiffness matrix is narrowly banded, and
can be solved as a DOF x 6 matrix in an appropriate banded solver.

PROGRAM DESCRIPTION

The purpose of the computer program is to create a simplified model
as described above which accurately approximates the story translation
stiffness of a given original frame-wall model. This is done by using
the program to adjust the moments of inertia of the bending elements of
the simplified model until its story translation flexibility matrix
converges upon that of the original frame-wall. To accomplish this, the
story translation stiffness matrix of the original frame-wall is entered
as input to the program. Matching the stiffness matrices is equivalent
to matching flexibility matrices because the two are inversions of one
another. The element-to-DOF connectivities and initial trial moment of
inertia (I) values are successively entered, and the model is solved for
a trial flexibility matrix. Numerical methods are used to find the
optimum I values needed to make the trial matrix best approximate the
given frame-wall matrix. The iterative process is repeated until the
matrices converge to the desired accuracy. The two stiffness matrices
and the final I values are then printed.
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The program was written in BASIC language for use on a 16k RAM
micro-computer. Because the simplified model has few degrees-of-freedom
and can be assembled so as to be narrow-banded, a 16K computer is large
enough to store the program and analyze a ten-story model. A flowchart
of the program is shown in Figure 3. A discussion of the functions of
the various subprograms is presented below.

SUBPROGRAM FUNCTIONS

Control Subprogram

The control subprogram performs the input and output functionms,
calls the subprograms, assigns element property values, and evaluates
the iteration to convergence of the original and trial stiffness
matrices. The two matrices are normalized for comparison, with the
largest story translation made equal to one. The final normalized trial
matrix is again scaled by comparison with the maximum story deflection
of the given flexibility matrix to create the final simplified model
matrix which approximates the original matrix. The printed output lists
the two matrices and the generated I values for the final simplified
model.

Element Matrix Generator, Loader and Global Solver Subprograms

The element matrix generator and global matrix loader subprograms
are standard routines which assemble the appropriate slope-deflection
equations and enter them to the global matrix at the locations
appropriate to the global DOFs. The SYMSOL equation solver was chosen
for the global matrix solver to take advantage of the favorable banded
nature of the simplified model. The SYMSOL solver was modified to
efficiently process multiple unit story load cases.

Element Property Optimization Subprogram

For each element iteration, four trial element I values are
computed to bracket the previous I value. The program solves the trial
flexibility matrix for each of the four I values. The sum of the
squares of the difference between the entries of the original and each
of the four trial values. The element property optimization subprogram
then uses a Vandermonde matrix to generate-a cubic curve which passes
through the four trial values. The quadratic expression for the slope
of this curve is then solved to yield a minimum value for the sum of the
squares, which corresponds to the optimum I value.

USE OF THE PROGRAM

The use of the program is demonstrated in the following example
problem, which is typical of the type of problem solved by engineers
engaged in seismic design of new structures or of corrective measures
for existing structures. In this example, shown in Figure 4, the
original frame-wall is difficult to model accurately with linear
elements or infill panels due to its geometry. Even if the frame-wall
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were modeled with these elements, it would have a large number of
degrees of freedom.

To obtain a more accurate model, the frame wall as shown was
modeled using SUBWAL, a finite element program developed especially for
use in building analysis (Ref. 4). The SUBWAL model was analyzed using
unit story loads to determine the flexibilitv matrix for this frame-
wall. The shape of this flexibility matrix is shown graphically at the
top of Figure 4, with arrows representing the unit loads at each
alternate story level. This flexibility matrix was then entered as
input to the program for solution. The program was run to converge the
matrices and produce a final simplified model. The lower triangles of
the symmetrical normalized flexibility matrices for the original frame-
wall and the simplified model are shown, as are the final I values for
the simplified model. Note that the flexibility of the simplified model
closely approximates that of the original.

The above example shear-wall was one of six walls of a hospital
wing. A comparative analysis was performed on the hospital wing using
program TABS. 1In the first analysis, all six walls were modeled with
linear elements and shear panels, in accordance with the standard
procedures of using TABS. In the second analysis, the four most complex
walls were first solved separately as modeled for the first analysis to
determine their individual flexibility matrices. Each of the four
flexibility matrices was then entered as input to the simplified model
program for solution. The program produced four simplified models which
closely approximated the original models. The two remaining original
frame-walls were not complex and were modeled as in the first analysis.
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The four simplified models and the two original models were then
used in TABS for the second analysis, and the TABS program was run for
the same load cases as used for the first analysis. A dynamic analysis
for modal shapes and frequencies was also run for both model assemblies.

The results of the first and second analysis were compared. The
modal frequencies and shapes were very close. Static displacements and
story shears were closer for the upper floors then for the lower floors.
This is due to the comparison routine used in the iterative convergence
in the program, which compares the square of the differences between the
entries of the original and trial matrices, thus favoring the larger
displacements in the upper stories. Overall, the solutions are
considered close enough for most practical applications.

The first analysis using the original models required almost seven
times the computer time as that required by the second analysis, which
used the simplified models. This magnitude of savings could be -
significant if multiple runs were needed to adjust the stiffness or
placement of additional or modified frame-walls in an actual
application.

CONCLUSION

The technique offers a simplified frame-wall model which can have
significantly fewer degrees—of-freedom than the original model. The
effort involved in generating the model can be offset by the effort or
expense saved with its repeated use. The accuracy of the model must be
seen in comparison with the general practice of multi-story building
lateral analysis, in which many simplifying assumptions are considered
acceptable. :
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