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SUMMARY

The constituent parts of the force system replacing earthquake action
change according to instationary stochastic process, which can be described
by the product of a periodical deterministic function and a nonstationary,
stepwise stochastic process which can be represented in each halfperiod
by one of to each other correlated Gaussian variables. With the aid of the
solution of the differential equation system due to the linear elastic
dynamic effect with damping the mean values and covariance functions of
displacements of the structure can be determined. With various weighting
of the components differing from each other in frequency we can follow the
real earthquake spectra. Simple numerical example is added.

INTRODUCTION

In the actual civil engineering practice most buildings to be exposed
to horizontal dynamic loads (replacing effect of earthquake) have vertical
load-bearing structures of non-symmetrical floor plam. Structurally it
means that the vertical load-bearing structures of the building are frame-
works, columns, independent or connected bearing walls or combinations
thereof. Deterministic analysis of such structures can be simplified by
using the linear viscoelastic structural model suggested by the first
author, which consists of rigid horizontal floor planes and of bar-connec-
tions substituting the vertical load-bearing elements. (See Ref.l)

NUMERICAL METHOD IN CASE OF DETERMINISTIC LOADS

The behaviour of the previously described modelled structure can be
characterised by the matrix differential equation of motion (Ref.2)
(notations see at the end of the paper)

ME+CE+RE=p ¢))

Here f represents a hypervector of 3 times n dimensions (n is number of
floor planes) containing displacements in direction of floor plane axes
and rotations in the plane of rigid floor platforms, p(t) contains the (in
work expressions to f corresponding) time-dependent generalized forces.
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Time-dependence of coefficient matrices is neglected. The numerical method
of solution (Ref.3) is based on the assumption C = o K on a linear transfor-
mation in the form £ = Z q and upon & multiplication of (1) by Z* from the
left side respectively. It is possible to perform these after determination
of eigenvalues and eigenvectors of the problem without damping. (Z contains
these eigenvectors in a reduced form.) The obtained 3 times n unconnected
differential equations for the transformed generalized displacements can

be solved and the last step of the algorithm needs a re-transformation to
the originally unknown functions.

INVESTIGATION OF THE STRUCTURE UNDER EFFECT OF EARTHQUAKE-LIKE STOCHASTIC
LOADS

Random excitation of a structure due to earthquake can be described
mathematically by the aid of stochastic processes. (Ref. 5, 6) The solution
of the problem was sought first for stationary parts of earthquake motion
by the spectral method. The use of this method was extended for special
instationary cases by use of envelope functions (Ref. 7, 8, 9).

Tn the following we shall deal only with the solution of one differential
equation of the previously described transformed system in case of
stochastic loads:

q+d q + wi q = G(t) (2)

The experiences of matrix solution for static random loads given in
(Ref.10) should be used in multidimensional case, but we don’t touch upon
this side of the problem. According to the nature of loading the reduced
function G(t) can be built up as sum of products of a deterministic
sinusoid function g (t) and a stepwise random function g, (t) (See Fig.l).
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Fig.l.

If Qi are chosen as mean values, then £; are Gaussian variables with mean
value 1,0 and covariance matrix B;;, which generally is of banded nature.
The principle of linear superposition is taken as valid and for one load
component history as represented on Fig.l. mean values and covariance
functions of q(t) can be evaluated as follows (q, and &o are taken as of
each other and of &5 values independent normal variables) »

1
Efa(t)] = b(t) E[q ] + h(t) E[q ]+ 1 a;(¢) E[g,]
i=1

here t <t <t .4 (formulas of b(t), h(t) and a,(t) are given in Appendix)
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Bq<tI,tII) = b(ep)-b(typ) Gz[qo] + h(tp) h(ty) cz[aoj +a*(ty) B, alty)

here tm1 <tI stml+1 and tm2 <tII Stm2+l order of vector a and of quadratic
matrix éﬁi is max [ml+l,m2+L].

As various harmonic functions have different rates of occurence we can use
the method of weighted realizations (Ref.ll , 12) to obtain final values

of E[q]”Bq(tI’tII) . We shall use the assumptions that series values of g
belonging to different harmonics are independent that the domain of
frequency field of excitation is finite and width of it is rather small
respectively.

NUMERICAL EXAMPLE

A structure considered as particle with mass 10t on a subgrade
characterised with spring coefficient 31047 t/s? and damping coefficient
111,44 t/s (Fig.2) shall be investigated numerically, if fo =0, £, =0
and 3 equal halfperiod long excitation (w;=20 s™%) is given, as on Fig.l.
The amplitudes are given by E[p,.. ] = 1000 MN, E[g;] = 1.0 and
02[51] = 0.0025 (i = 1,2,3). Correlation of g; (1 =1,2,3) is neglected.
Only one degree of freedom motion
is considered, the resulting dis-
placement as Gaussian stochastic

m i process is drawn on Fig.3.
1 o ' The structure can be examined in
OO view of permissible displacement
e ‘ limit.
Fig.2.
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NOTATION

The following symbols are used in this paper:
a(t) auxiliary vector-function
b(t) auxiliary function
B (tI,tII) covariance function of q
covariance matrix of random variables &y... &;..

?gg damping coefficiént

c damping matrix of the structure

d damping coefficient after reduction

E[_] expected value of random expression in the brackets:

£,£,f displacement hypervector, first, second time derlvatlves

T respectively

g(t), G(t) given time dependent function

h(t) auxiliary function

ij.k integer numbers (indices)

K stiffness matrix of the structure

M generalized mass matrix of the structure

Eéx[:] maximum value of constants in the brackets

n number of floor planes of the structure

p(t) hypervector of time dependent generalized forces

q(t) generalized displacement after transformation

90 initial value of q

95 initial value of first time derivative of g

Q3 absolute value of reduced amplitudos (generally mean value)

t time parameter

tg starting time of loading

Z transformation matrix built up of reduced natural mode shapes
of the structure

. constant

Es correlated sequence of normally distributed random numbers

Gt ] standard deviation of random expres51on in the brackets

z summation convention

Wy associated natural frequency -

wy changing frequency of force system of ‘excitation in period i
i #£0

APPENDIX

Gomputation of a(t), b(t), h(t)

If t = tk’ o= m and tmk <tkf5tmk+1 ;espec?ively
for i = l...m '

d ,
. A S U I NN Py
il 7+ (uyreg) sinlfu,- 7 (eoey )
a (t) = (-1)7 Q. 4w, +
i il i 2 2.2 22 - 2
(w,~w )" + d"w; V. VV/ 2 d
1 O . -1 - w0' - '—4"

3 ‘v docose. € - e I )
+ d cos (sz—*g— (t-t )g‘w COS(wi\ti ti-l)2‘+ S )Sln(w'(ti ti_l”
o 4 i-1 i, 2 2.2 22 2 2 2 2 2
i .

(wi-w)) +;d Wy | (wi-u?)
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