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SUMMARY

This paper presents an evaluation method of distributing the total
deformation of a shear wall into the flexural and shear deformations. The
paper also proposes an analytical method of evaluating flexural and shear
deformations of a flexural type shear wall. In the analysis, such a shear
wall is represented as a truss system having a non-prismatic elasto-plastic
truss member. The analytical results agree well with results of the shear
wall tested in the US-Japan Cooperative Research Program.

INTRODUCTION

In order to predict the inelastic response of R/C structures under
dynamic earthquake loading, hysteretic behavior of their structural compo-
nents, i.e. beams, columns, and shear walls, must be evaluated appropri-
ately. Various hysteretic load (moment) versus deformation (curvature)
models, such as the Takeda model, have already been proposed for beams and
columns. Hysteretic behavior of shear walls, on the other hand, remains
unclear in many respects. Shear deformation of flexural type shear walls
is one of those yet to be determined.

Many experimental studies of shear walls have been carried out, but
most of their load-deformation data are presented in terms of the load
versus total deformation. Very few data refer to the shear and flexural
deformations primarily because of the difficulty in separating the total
deformation into these two deformations. Also, practical theory to
analyze shear and flexural deformations for flexural type shear walls has
not been presented yet.

FLEXURAL DEFORMATION AND SHEAR DEFORMATION

In shear wall tests, shear deformation is sometimes conventionally
estimated from changes in the length of the two diagonals. However, the
shear deformation given by this method contains flexural deformation be-
cause of the existence of a moment gradient along the height of shear
walls.

This chapter describes the relationships between horizontal and
vertical displacements at the four corners of a shear wall, and flexural
deformation, shear deformation, and expansion. It also proposes a simple
method to evaluate each deformation.
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COMPONENTS OF DEFORMATION

Displacements of a shear wall subjected to a lateral load are illus-
trated in Fig. 1. With an aim towards simplification of the development
of equations, horizontal and vertical displacements at the base are modi-
fied to be zero. It is also assumed that these displacements can be rep-
resented by three components, i.e. shear deformation (which includes slip),
flexural deformation, and expansion shown in Fig. 2. The following
relations are also assumed.

U g = ugg = ug = 1), URg = -Upg = Ug ————(2)
Up TURg = ug = T 3, Vgg = VLE = Vg == (4)

The shear deformation can be given by Eq. (5) or Eq. (6) from the relation-
ships between these displacements and those shown in Fig. 1.

d h
ug = 73 (61-62)—{uB+T(VR-VL)}
- - -y -—— 5)
or, ug = ——;—— (ug + uy) - wug o s 6)
where,
1 1
8 = ) (VL - VR) = ——l_ (VLB - VRB) “““ (7)

EXPRESSION OF FLEXURAL DEFORMATION AND SHEAR DEFORMATION IN TERMS OF
ROTATION

Eqs. (5) and (6) imply that in order to estimate the shear defor-
mation, flexural deformation must be inevitablly estimated with suffi-
cient accuracy. Flexural deformation can be assumed to be given by Eg. (8).

1 1 h
ug = hJ 8pdn=JS —
B o M 02

where,

( Vin " VRn d&n. e 8)

n =y/h

8n = rotation of a shear wall at n

VRn» Vin = Vvertical displacements of right-hand side and left-hand
side boundary columns at n, respectively.

An example of the distribution of en along the height of a cantilever
shear wall is illustrated in Fig. 3. Curvature is dramatically increased
around the base where the occurrence of cracks and yielding of steels is
usually observed.

Eq. (8) can be rewritten by Eq. (10) using a new factor a defined by
Eq. (9).
rrondn

=0
e 9),  ug = ash —-(10)

o is the ratio of the shaded area to that surrounded by solid lines ABCD
in Fig. 3. Therefore, it is reduced to the prediction of this ratio to
evaluate flexural deformation. With regard to a, there is generally a
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relationship as shown in Eq. (11), when the point of contraflexure is
located above the story being discussed of a shear wall.

1/2 <a < 1 ———(11)

By substituting Eq. (10) into Eq. (5) or Eq. (6), shear deformation is
given as follows:

d 1
ug = 5o (61 -83) - (e - —— ) 6h -—-=(12)
or, ug = % (ur + ur) - abh -———(13)

Eq. (12) proves that shear deformation given approximately by only changes
in the length of diagonals, corresponds to shear deformation given by 1/2
of a. However, if 1/2 of o is assumed, the shaded area in Fig. 3 would be
approximately represented by the area of the triangle ABC, which occurs
only in the case of pure bending, and this therefore results in an over-
estimation of shear deformatiom.

Fig. 3 is nothing but a conceptual illustration, but it does not seem
to be difficult to evaluate a with certain accuracy because of the general
behavior of rotation. For example, if either rotation 6y, or right-hand
side and left-hand side vertical displacements at mid-height of the story
being discussed of a shear wall were measured, considerable improvement of
accuracy in evaluation of o could be expected. Fig. 4 shows such examples.
In these examples, there is generally relationships given by Eqs. (14)
through (17) between approximate values a; and a, and the exact value a.

oM
)

0.75 <a; / a <1 ——-(16), 0.875 < ap / a < 1.167 —-———(17)

8
a = -%— (0.5 + )-——=(14),  ap = —i— (0.5 + 3—-51—)-"-(15)

The maximum possible error amounts to 25% for a; and 16.7% for a;.
However, o, seems to estimate a with good accuracy as is expected from Eq.
(17) and Fig. 4.

FLEXURAL AND SHEAR DEFORMATIONS OF FLEXURAL TYPE SHEAR WALLS

In this chapter, stress of flexural reinforcing bars of boundary
column under tension is expressed by H. Bachmann’s theoryl”. Shear wall
is represented as a truss system having a non-prismatic truss member whose
cross sectional area is determined by the stress along the height of the
boundary column. Then flexural and shear deformations are evaluated.

TRUSS MODEL OF SHEAR WALLS

Fig. 5 shows crack pattern of a three story shear wall tested in
US-Japan Cooperative Research Programz. When reinforcing bars of a
boundary column under tension yield, cracks developed in the tension side
column extend obliquely to the bottom part of the compression side column
through in-filled panel wall.

In this paper, shear walls after yielding of flexural reinforcing
bars of the boundary column under tension is expressed as a truss model
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shown in Fig. 6. The main object of the analysis is placed to deformations
at the first story, so truss members above the first story are assumed to
be rigid. It is also assumed that shortening of the boundary column under
compression is neglegible, and tensile chord member (boundary column under
tension) is expressed as a non-prismatic elasto-plastic member whose cross
sectional area is given by Eq. (18) so as for exsisting stress to satisfy
Eq. (19) which is determined from equilibrium of the forces at an inclined
cracked surface and at a base (see. Fig. 7)1l

A 0, %0 A (18)
n - = 5. ronz_ B0 R
an 0 gy TOyN
T a,h
on ar 0y =Tayn 19, r W) (20)
where,
A Ao = cross sectional areas of the tensile chord member, at y-

height and at base, respectively, of the assumed truss system

ar = sum of the cross sectional area of reinforcing bars of the
boundary column under tension
a, = sum of horizontal reinforcement area of the in-filled panel wall

On» Oy = stress of reinforcing bars of the boundary column under
tension at y-height and at the base, respectively
tensile yielding stress.

%y
The deformation of this truss system consists of deformation due to
stretching of the tension side column, that due to shortening of the
diagonal compression member, and that due to stretching of the beam
(horizontal tensile member). Figs. 8 and 9 show their components. There
are following relationships between these components.

u = ug + ug = uy + u, + ug /2 ———(21)
ug = abh = au, --—=(22), ug = ug] + ugz + uggy -——=(23)
ugy = (1-a) 8h = (1-0) u;=(——-1)ug (20
d
ugp =3 ¢ -—-(25), ugz =uy /2 -—==(26)
where,
u = average horizontal displacement of the right-hand side and left-

hand side horizontal displacements of the first story (sum of
flexural and shear deformatioms)

ugy, Ugp, Ugj = shear deformation due to stretching of the tension
side column, that due to shortening of the diagonal compresion
member, and that due to stretching of the beam, respectively.

VERTICAL DISPLACEMENT OF THE BOUNDARY COLUMN UNDER TENSION AND FLEXURAL
DEFORMATION

Vertical displacement v of the boundary column under tension is given
by Eq. (27), and & and flexural deformation up are given by Eqs. (28) and
(29).

1 ugg ;
= h/f e d i = ——BX e (28)
v /) €qdn @n, o - (28)
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1
up = b £ 9dn - -———-{;vndn = = { {Tendndn ——(29)

™
I

n strain of tensile chord member at y height.

The €n is determined based on the stress 9n given by Eq. (19).

COMPARISONS OF ANARITICAL RESULTS WITH EXPERIMENTAL ONES

Figures 11 and 12 show the comparisons between experimental and ana-
lytical results of the shear wall at first story of the full scale seven
story structure tested in the US-Japan Cooperative Research Program® .
The stress versus strain relationship for reinforcing bars of the temsion
side column is represented as shown in Fig. 10 according to tensile test
result. The other constants such as height (up to bottom of 2nd floor
slab), width of first story shear wall, amount of reinforcing bars are:

Eg / Egy = 34.8, egg / €y =7.03, h = 363cm, £ = 500cm

o, = 3780kg/cm?, ap = 30.96cm?, a_ = 25.03cm?

In the analytical results, ugp and ug3 are not considered in shear de-
formation because their values are of little amount campared to ug;-

Shear and flexural deformations increase according to tip drift angle.
Furthermore, the ratio of shear deformation to total deformation dramati-
cally increases according to the increase of tip drift angle, and in the
large deformation region, shear deformation is nearly half of total defor-
mation. The analytical results agree well with experimental results.

PRIMARY CURVE OF THE LOAD VERSUS DEFORMATION RELATIONSHIP

The primary curve for the load versus flexural deformation relation-
ship has three breaking points as shown in Fig. 13. These breaking
points are flexural cracking, yielding and maximum strengths.

The primary curve for the load versus shear deformation relationship
before yielding is represented by bi-linear, and that after yielding in
flexure is done by a curved line which is given by Eq. (30) by considering
the ug; versus ug relationship shown in Eq. (24), and ug, and us3(see. Fig.
14).

’ 1
ug = ugy + ug, + ugy = GT;_ -1) ug + ug, + ugy

P - P
= ( i -l) {uBy + ’IT'_—Z‘; ( uBu- uBy)} + uSz + uS3 —""—(30)
CONCLUSIONS

Following conclusions have been reached.

1. Shear deformation is overestimated, and consequently flexural defor-
mation is underestimated if the shear deformation is determined
simply as a difference in length of two diagonals. ,

2. Flexural and shear deformations are estimated with excellent accuracy
by using the rotation at the story mid-height of a shear wall.
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3. Shear deformation increases by the rotational mechanism having a
rotation center at the base of the column under compression.

4. Shear deformation significantly increases after reinforcing bars of
the boundary column under tension yield. The ratio of the shear
deformation to the flexural deformation is amalytically determined
by a truss model which has a non-prismatic elasto-plastic member.
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