ON ULTIMATE SHEAR STRENGTH OF REINFORCED CONCRETE SHEAR UNIT WALLS

S. Mochizuki

SUMMARY

This paper presents the ultimate shear strength of reinforced concrete
unit walls relateing to the mechanism of shear resistance and failure. The
effects of the ratio of reinforcing bar in wall, the ratio of shear wall and
additional axial loading of surrounding frame to the ultimate shear strength
were discussed, comparing the theoritical values with the experimental values
of 28 specimens of past experiments. The formulas of ultimate shear strength
modified by multiple regression analysis coincide fairly well with the values
of experiments, of which the multiple correlation coefficient is 0.98.

INTRODUCTION

As an instruction of the disaster caused Tokachioki earthquake, security
of durability as well as strength had been advocated for the aseismatic design
of buildings in Japan and the fifth revision of vstandard for structural cal-
culation of reinforced concrete structures” was completed in 1971. In the re-
vision, the article for the quake-resisting wall has also been revised. Al-
though the revised formula is advanced one, substantial deviation from the ex-
periment has been noticed not to be completely satisfactory. From the above
point of view, this paper deals with a quake-resisting wall of reinforced con-
crete of a story and a bay and a formula for the ultimate shearing strength is
obtained. Then, comparing it with experimental result, the characteristics of
the resisting factor is made clear and a formula for the ultimate strength is
proposed for the use of practical designing.

MODELING OF RESISTANCE AND FAILURE MECHANISM

As shown in Fig. 1, a quake-resisting wall of reinforced concrete of a
story and a bay is considered to be subjected to shearing force due to exter—
nal forces of tension and compression imposed simulataneously at joints in two
diagonal directions.

The notation is as follows. % i =
+: thickness of wall plate D U —— & —d
1: distance between center lines of ' :
columns of surrounding frame of f [ . g
wall plate l l
% : distance between center lines of | l \
beams of surrounding frame of wall S/ ——= S i
plate T i 1Bl
l": inside length of wall plate % ¢ %
h': inside heigth of wall plate &:{é:::::jézzszziézg
Dc: total depth of column 1%t R &
Db : total depth of beam
Be : width of column Fig. 1 Shape of Quake-Resistig
Bb : width of beam Wall and Extermal Force
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QHI horizontal component of external force at a joint
QV: vertical component of external force at a joint

Constructing a model for resistance and failure mechanism after occur-
rence of cracks in a wall plate of a quake-resisting wall shown in Fig. 1, the
following items of assumption are provided. (1) The angle between direction of
cracks in a wall plate and horizontal or vertical direction is 45 degrees. (2)
Cracks in a wall plate occurs uniformly and demsely over its all area. (3) Re-
sistance of a wall plate after occurrence of cracks owes to compression braces
of concrete in the direction of cracks and yielded tension braces of reinforce-
ment of a wall plate in the direction perpendicular to that of cracks. (4) A
surrounding frame is made of straight members placed along the center lines of
members. Based on the above assumption, the equilibrium of a triangular ele-
ment with width of Az/v2 shown in Fig. 2 gives:

A ¢ )

‘A&ﬁgﬁ/ﬂ ijq‘hxt
zz=a¢—ap--..--..o....-.-..-.-(z) N i —r,,xt /———--)x
:.C>%Q f%yl&
where K&K éﬁ!/
Ti1. shearing stress of a wall plate &S et N
expressed with tensile stress S o R

of a tension brace of rein-
forcement and constraining
stress of a surrounding frame
T2. shearing stress of a wall plate

expressed with compressive
stress of a compression brace
of concrete and constraining
stress of a surrounding frame

Fig. 2 Equilibrium of Compression
Brace of Concrete

—— Compression Brace of Concrete
—---— Tension Brace of Reinforcement

0_. yielding stress of shear reinforcing bar of a wall plate
GZZ compressive stress of a compression brace of concrete
GR: constraining stress of a surrounding frame

psi ratio of shear reinforcing bar of wall plate

Therefore, for T:1>T2, namely 20 >Gc—psc , compressive~shearing failure of
a plate, so-called slip failure occurs and for Ti1<T2, namely 20R<oc—pscy, con-
straining failure of a surrounding frame occurs. As the constraining failure
of a surrounding frame, shearing failure and tensile-bending failure are con-
sidered. However, constraining failure of a surrounding frame is mainly shear-
ing in general and tensile-bending failure is seldom. This paper deals solely
the shear failure of a surrounding frame.

FORMULA OF THE ULTIMATE SHEAR STRENGTH

A quake-resisting wall shown in Fig. 3(a) is decomposed into those in Fig.
3(b) and 3(c) and dealt as a problem of a surrounding frame being subjected to
shearing force and conmstraining reaction from a wall plate shown in Fig. 3(b).
As shearing failure of a surrounding frame, two cases are conceivable. One is
the shearing failure of beams and the other, that of columns.

Equilibrium Condition

-In the beginning, shearing failure of the beam is dealt. In order to es-
tablish an equilibrium equation of a surrounding frame of Fig. 3(b), horizon-
tal section m-m in the vicinity of joint A, B is taken and the forces acting
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Fig. 3 Resistance-Failure Mechanism of Reinforced Concrete Quake-Resisting
Wall after Occurrence of Cracks
(a) Reinforced Concrete Quake-Resisting Wall after Occurrence of Cracks
(b) Surrounding Frame of Relnforced Concrete Quake-Resisting Wall after
Occurrence of Cracks
(c) Wall Plate of Reinforced Concrete Quake-Res1st1ng Wall after Occur-
rence of Cracks
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on the section are expressed as shown in TM‘\ /.07
i i1ibri { o 4l NG s o
Fig. 4(a). '?he equilibrium equations ?f -2‘—'“,3:—7(7{ .L«:_a_‘;_a.gﬁa‘:ﬁl./\fm&’j
the force with respect to x, y-direction m e = ot Ml m
and the moment with respect to point B are + A
expressed as follows: o : (l)
1 Ml a
Qu=t f e aQetaQe .t it aan.. . Ceeeeaaa. 3) G;O: ﬂ::t, o
ANc,+BNM=tﬁaRdx .................... %) e
&
— ANl aM— g Mt t| opdzeal — QL fmg oo e v e s (5) ot —_
0 2
® =&
where .
AQC(BQC)I shearing stress of column DWS;
at a joint A(B) ST,
A co( Neoo) - axial force of column at a 27D N
joint- A(B) ' %4

M (M ). end moment of column at
c'Be PR
a joint A(B)
a. ratio of distance between

a point B and position of"
the center of all constrain-
ing reaction acting on the
beam to the beam span

Fig. 4 Equilibrium of Forces Acting

on the Sections (a) for Beam

(b) for Column of Surrounding
Frame

: . 4
Now, failure of a surrounding frame is considered to be shearing failure
of beam end. Therefore, shearing force at a beam end A is expressed with the
shearing strength Q$ of beam to inttoduce the following relation.

= _ Q) .
where Qs=—4Qs=aN_o+ 2V ................ EREREEE .._ sesasss ceeccansaa ceeens (6)
AQb: shearing force of beam at a joint A, Qb: shearing strength of beam
Considering Eq.(6), Eq.(3) gives.
Qu=pwostlt (Q +M)+AQ:+H@: e (7

Vertical section n-n of a surrounding frame as shown in Fig. 3(b) is sub-
sequently taken in the vicinity of joints A, D in order to consider shearing
failure of the column, An equ111br1um equation for the beam .is formulated and
solved in the follow1ng
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Qu=pastie 5 (Qu-AMIBM) 10 10, ittt et reareaeaaeaa, (8)
where
AQb(DQb)Z shearing force at a joint A(D) of beam
AME<DMb): end moment at a joint A(D) of beam
B

ratio of the distance between a point D and a position of
the center of all constraining reaction acting on the column
to the height of a story
Q . shearing strength of column
Multlplylng Eq. (8) by 1/h and using the relation =G, +7/h, the follow-
ing equation is obtained.:

Qg=p,a,zl+%;(0=—:‘.]‘.l"_;'_”_¥_‘.)%_(AQ,,+DQ,)% ....... Cesneeann Ceesseaineaieaes .. (9

Assumption of the Ultimate Bending Moment Distribution of a Surrounding Frame

Originally, such a problem as shown in Fig. 3(b) is statically indetermi-
nate with high degrees of redundancy and equations of equilibrium conditions
for themselves are not sufficient for the solution. For the exact ultimate
bearing strength, elasto-plastic incremental analysis of a statically indeter-
minate frame should be applyed. However, we aim here to calculate the ultimate
bearing strength by paying attention on stress situation at the ultimate con-
dition. The following items of assumption for the analysis are established
based on conventional theories and experimental studies. (1) Bending moment ¥
of surrounding frame is taken to be the sum of bending moment ¥' of the con-
straining reaction only and the bending moment M” resulted from horizontal
force. (2) The ratio of the bending moment M" to the bending moment M' is de-
termined by the condition that bending moment M of a surrounding frame is zero
at a loading point B of the temsile external force in the diagonal direction
and at a point D (Ref. 1,2). (3) The distribution of the comstraining reaction
is uniform and namely, @=p=0.5. According to the items (1) and (2) of the
above assumption, a equilibrium system of a surrounding frame F is divided into
that of a surrounding frame F'! under symmetrical stress due to constraining re-
action only shown in Fig. 5(b) and that of a surrounding frame F” under anti-
thesical stress due to horizontal force shown in Fig. 5(c). These subsystems
are in a state of equilibrium and therefore, the equilibrium of the original
system is considerably simplified. Analysing a surrounding frame F', end mo-
ments of a column and a beam at a point A are obtained as follows:

g % ¥ H

2 Al s }
FEIEE “%A/ﬂ?irrf B%” T — B“
% a f F 3 EL( =y /
et + b~ - l
B ¥ = - 1 !
1 “-94; 3 ; T
& - & - 1
Ou FCU. Q i ST
) ' % ) CQE‘*D — e;,r}-ﬁ_%i
& S ' o
() (b) & )

Fig. 5 The Ultimate Bending Moment Diagram of Surrounding Frame
(a) Bending Moment (M) of Surroundlng Frame '
(b) Bending Moment (¥') of Surrounding Frame F' Subjected to

Constraining Reaction Only
(c) Bending Moment (M" ) of Surrounding Frame F"” Subjected
to Horizontal Force
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AA{-——Ahh-—vﬂ—pgﬂbiai:zy—T....,,...,.,...,.......,.................(10)

where
AMé(AMé): end momemt at a point A of a column (beam) of a surrounding
frame F' being subjected to the constraining reaction
k. ratio of stiffness of beam to that of column
U=2/h. ratio of the distance between the center lines of the columns
to that of the beams

On the other hand, the following relation is obtained from the item (2)
of the assumption.
AM =2 sM.', pM:=0 ¢ ¢ ¢ ¢ o » R (11) AMe=2 aMy', DM3y=0 e et e vooencoccnns (12)

Substituting Eq.(10) into Eq.(11) and Eq.(12), the following equations
are derived.

x
aMe=—(ztl— Pﬂﬂb6u+k) ,,aha=0 ... (13) Amh—&d—pmyﬁsu k) T oMe=0 . (14)

For the shearing force supported by a column and a beam due to Eq.(7) and
Eq.(9), only a surrounding frame F" can be taken into consideration because a
surrounding frame F' is symmetrically stressed and the horizontal force be-
comes zero as a whole. Therefore,

AQe+BQe=24Q s e et st anas (15) AQA+DQb=2AQA'=—2AQc"—};— P ¢ 1))

where
AQg(AQg)Z shearing force at a point A of a column (beam) of a surround-
’ ing frame subjected to the horizontal force

On the otherhand, the item (2) of the assumption yields:

AQr=—aMIoMS  ZaMS__2aMe ... ettt . (17)

where

AM"( M"). end moment at a point A(D) of a column of a surrounding frame
subjected to the horizontal force

Making use of Eq.(17), Eq.(10), Eq.(13) and Eq.(15) are substituted into
Eq.(7) and Eq.(10), Eq.(14) and Eq.(16) into Eq.(9) to obtain Eq.(18) and Eq.
(19), respectively:

_ 2{8u(l+k)+u+k} _ 3uQ+k)+ui+k
Qu=psaytl+2 Qb'_a POTR) T +E s <18) Qu=p,0tl+2 o:'—m ....... (19)

Eq.(18) is the ultimate strength formula of the quake-resisting wall of
beam shear-failure type and Eq.(19), that of column shear-failure type.

Correction of Shearing Strength by the Axial Force

and Q in Eq.(18) and Eq.(19) are considered to be the sum of shearing
strenggh withGut the axial force and corrected value by the axial force. Name-

L
Y e 1(ANp - N e s e nnnennsns(20) TemTor (ANt Ny e v e e n e v e cee..(2D)
where

(Q ). shearing strength of a beam (column) without the axial force

? the axial force at a joint A of a beam (column) of a surround-
A bo A co N -
ing frame
Nb(NC)I the additional axial force of a beam (column) of a surrounding
i frame F

n. correction factor of shearing strength by the axial force
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N. in Eq.(20) is the sum of the axial force . N! of a beam at a joint A
of a surgOund'ing frame F'! subjected to the comstraining reaction only shown in
Fig. 5(b) and the axial force N{)’o of a beam at a joint A of a §urrounding
frame F" shown in Fig. 5(c). Tﬁerefore, the following equation is obtained as
seen in Fig. 6.

1 1 1
aNpo= ANy + ANs" =%ﬂkth—'§’QH+AQ=' =5ogth—gil

. &
Ceraeaen ceeees (22) ~Al-‘a°%@7 — TT%%E%N@(‘TW«;-:
where 8 Lot ® g, B
AN];o (AN{;O)I the axial force of a bean ng o %M o
at a point A of a surround- P = IT
ing frame F'(F") subjected B N V| ¢ ﬁf W2 ¢
to the constraining reaction (a) S (b) :

(horizontal force) only

Similarly, ¥ __ in Eq.(20) is ex- Fig. 6 (a) Equilibrium Situation of

pressed in the f%ligwing as seen in Fig. Forces Acting on the Sec-
5. tion at a Joint A of Sur-
aNeo= AN, + AN;,’:%aRtI—--%—QV— 4Q =—;—a Rtl-——;-nh rounding Frame Subjected
to Constraining Reaction

.............. (23) Only
where (b) Equilibrium Situation of

N' (,F" ). the axial force of a column
A"co*A co .
at a point A of a surround-
ing frame F'(F") subjected
to the constraining reaction
(horizontal force) only

Forces Acting on the Sec-
tion at a Joint A of Sur-
rounding Frame Subjected
to Horizontal Force

Using the relation of Eq.(3), Eq.(15), Eq.(16) and Eq.(17), Eq.(22) and
Eq. (23) are arranged as follows.

- g BOQ+R) +a -k 3Q—p) (1+k)
ANso= b e T QR T A FE e crteiraraans veesa (24)
PTGk el J 30-p) A+E) e eieeenaseeesnansrsenoss e 25
A= PO D A R IB A B A (25)

Substituting Eq.{(20) and Eq.(24) into Eq.(18) and also Eq.(21) and Eq.
(25) into Eq.(19), the following equations are obtained.

Qu=Cy Pyttt 2 Cyr (Qom7N) =+ s e s vvenonssosnsstnsacsososnsnns eeeteananans (26)

where for beam shearing failur type,

3a+R) () + Q+un) (BB +E) _ 2{3 u(L+R) +u*+ Rk}
& 3al+R at2(Q—m} +7+E " (27a) G= 3aAFB) (arnQ—mi+ai+k """ (27b)
D=y NaNys v torrenseensons (27¢)
where for colummshearing failure type,
_ 38Rt om) + (a M P+ ) o 3a04B) Atk .(28b
TR SE T B B SN (28a) G= 3A+bhl—7d—)+a+k """ ( )

To=To, N=N, covennnnanes vee(28c)
COMPARISON WITH THE RESULT OF THE PRECEDING EXPERIMENTS
The following conditions are placed for choosing test pieces in the pre-

ceding experiments in order to compare their results with the ultimate strength
formula of Eq.(26). (1) The quakéﬁrésisting wall is confined that of a story
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and a bay. (2) The method of loading is fundamentally simultaneous loading of
tension and compression in two diagonal directioms. (3) The case of compres-
sion loading in a diagonal direction is divided into simultaneous loading of
tension and compression in two directions and the additional extermal force at
a joint. (4) Shear reinforcement ratio of a wall plate is set to be more than
0.2%. {(5) Shearing strength of the beam and the column without the axial force
is determined with Ohno, Arakawa’s formula. (6) Correction factor due to the
axial force is set to be 0.1 with reference to a previous study. Test pieces
taken in this study satisfying the previous items are twenty-two pieces of
simultaneous tensile-compressive loading type in the two diagonal directioms
and thirteen pieceés of compressive loading type in a diagonal direction, name-
1y thirty-five pieces in total (Ref. 3,4).

Fig. 7(a), (b),(c) show the ratio of the experimental value to the theo-
retical value in terms of shear reinforcement ratio of a wall plate p_, ratio
of the length to the width of a wall plate p and additional axial stress of a
column O,, respectivly. The solid lines in the figure is obtained with the
method 0f least squares for the test pieces of temsile and compressive load-
ing type and the broken lines, for those of compressive loading type. Incre-
ment of shear reinforcement ratio of a wall plate in Fig. 7(a) decreases the
difference between the theoretical and the experimental values, as seen from
the gradient of solid and broken lines in the figure. About the effect of the
ratio of the length to the width of a surrounding frame in Fig. 7(b), the
solid line shows that the difference between the theoretical and experimental
values increases as the ratio of dimensions of a surrounding frame becomes
large, while the broken line stays almost flat. About the effect of additional
axial stress of a beam in Fig. 7(c), there is not large difference between the
solid and broken lines in the figure and the effect due to the amount of ad-
ditional stress is not clear.

The theory yields a value of safety side with scattering deviation of two
times as much as that of the experiment. Therefore, the deviation is studied
with the multipe regression analysis Eq.(29) is the ultimate shearing strength
Q.. of a reinforced concrete quake-resisting wall after performing the multile
regression analysis.

~

A ” ‘ i}

= N i N

R e S LE —

~~

i 05 a8

i 0wz VL SV o R v S R o R S A TS I B S R R B R v B -

< 2
(a) Py (%) (®) H (c) Oylkg/cm*)

o Tensile-Compressive Loading Type without Additional Axial Force on Column
« Tensile-Compressive Loading Type with Additional Axial Force on Column
A Compressive Loading Type with Additional Axial Force on Column

Fig. 7 Comparison of the Ultimate Strength of Quake-Resisting Wall between
Theoretical and Experimental Values
(a) Effect of Shear Reinforcement Ratio of Wall Plate
(b) Effect of Ratio of Dimensions of Quakza-Resisting Wall
(c) Effect of Additional Axial Stress of Column
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Qu=0.54C, p,0,tl+1.74 %2 C,(Z,—7N) +0.90 (ton) l
A @A) DR

401

w

Theoretical value §,(theory) cal-
culated with the ultimate strength for-
mula of Eq.(29) and experimetal value
Q.. (experiment) are plotted for abscissa
and ordinate, respectively in Fig. 8,
where @, (experiment)/Q,(theory)=1.0 is
indicated with a bold line, @, (experi-
ment)/QH(theory)=0.8, 1.2 with fine
lines and , shows beam shearing failure

1

QH(experiment)

8
8
4

10] 3 —
0

Z [
type, * column shearing failure type. A 0 10 2 3 $ o
multiple regression coefficient of this QH(theory)
case is 0.976 and 78.6% of all test

pieces fall in the error region of +20%. Fig. 8 Comparison between Theoretical

Value &, (theory) Calculated

CONCLUSION with the Ultimate Strength
Formula and Experimental Value
The author has proposed in this QH(experiment)

study a formula of the ultimate shearing

strength of a reinforced concrete quake~

resisting wall for practical designing

by obtaining a theoretical formula based on resistance-failure mechanism and
comparing with the preceding experimental result.

In comparison to a conventional formula taking the allowable shearing
force of a wall plate and the allowable shearing strength of columns of a sur-
rounding frame for the ultimate strength, the proposed formula is more con-
cretely based on the resistance failure mechanism and more accurate. In addi-
tion, possibility of expansion into an unsolved problem of the ultimate
strength formula in the case of bending failure of a surrounding frame is also
shown. The author is planning as a further study to make the ultimate strength
formula of this study more complete with additional data and references.
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