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SUMMARY

In the current earthquake-resistant code provisions for ordinary building
structures, it is required to determine the fundamental elastic period of
vibration as well as story drifts and member forces. In case when R/C shear
walls are provided into ductile moment-resisting space frames, it is necessary
to evaluate the lateral stiffness of thoSe walls as precisely as possible,
because analysis results are remarkably affected by the different techniques
in evaluating the lateral stiffness of the walls. This paper examines the
practical methods for evaluating the elastic lateral stiffness of the R/C
shear walls, especially arranged irregularly into low-rise building frames.

INTRODUCTION

It has been recognized that the reinforced concrete shear walls which are
provided into ductile moment-resisting space frames have a large lateral
load-carrying capacity as well as giving a large effect on the structural
behavior of the whole structure during the earthquake. Because of being very
difficult to evaluate their lateral stiffness precisely and quantitatively,
especially for shear walls arranged irregularly, most of the structural
engineers usually determine the horizontal rigidity of those walls by their
own engineering judgements. In accordance with the aseismic code provisions in
earthquake countries including Japan and USA, it is required to determine the
fundamental period of vibration, interstory drifts and an eccentricity between
the center of mass and that of lateral rigidity in each story of the building
frames. In order to evaluate those quantities precisely, it is necessary to
establish the practical method for evaluating the lateral stiffness of those
walls because the earthquake behavior of the whole structure is largely
affected by the different techniques in evaluating the shear wall stiffness.

Although a number of methods for determining the lateral stiffness of the
shear walls have been proposed by many authors, emphasis of most of those
works is placed upon the horizontal rigidity of the shear walls arranged
regularly or continuously through the height of the structures, and there are
quite few studies that deal with irregularly arranged shear walls. In recent
years it has been possible to make more precise structural analyses by using
direct stiffness method, finite element method and so on, and also some of the
analytical solutions or methods are available to be used for determining the
shear wall stiffness (Refs. 1 and 2). In most of those solutions and methods,
however, high speed electric computers are assumed to be used. While in
structural analysis for ordinary medium- and low-rise building frames,
practical evaluation method for shear wall stiffness is needed to be
established because those types of structural analyses are usually done by
using small computers and/or handiworks.
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Main objective of the present study is to examine the practical methods
for evaluating the elastic lateral stiffness of R/C shear walls having edge
members which are arranged irregularly into low-rise building frames. Since
the pattern of arrangement of the shear walls into a building frame has a
large effect on fundamental periods of vibration, lateral deflections and
member forces, a total of thirty-eight R/C model structures in which shear
walls are irregularly arranged in various patterns are selected as analytical
models. By using the exact stiffness matrices of all members and shear walls
where the shear walls are represented as four-node elements with
three-degree-of-freedom at each node, and whose stiffness matrices are derived
through techniques of established accuracy, both eigenvalue and static
analyses are conducted against lateral forces. All of the deformations of the
shear walls obtained are separated into three components - flexural
deformation, shear distortion and rigid-body rotation. Based on the relation
between those three components of the deformation and lateral shears carried
by the walls, values of lateral stiffness - flexural, shear and rotational
rigidities - of all shear walls are calculated. Results obtained are compared
with those determined by simple practical methods.

SELECTION OF MODEL STRUCTURES

Three-bay-six-story R/C ductile moment-resisting plane frames in which
shear walls are irregularly provided in various patterns .are adopted as
analytical model structures. These model frames shown on the left sides of
Figs. 4(a) through (g) are almost the same as those adopted in Ref. 3, where
the effect of different -manner of shear wall arrangements on static and
dynamic behavior of building frames was examined by using the same analytical
models. Those of thirty-eight building frames selected are the minimum-scale
low-rise buildings having at least the upper, lower and intermediate stories
along the height of the frames, and also having the exterior and interior bays
in their horizontal directions. According to their shear wall arrangements,
model frames are classified into eight groups, such as "TYPE A", "TYPE B" and
so on, as shown in Fig. 4. All of the size and shape of those frames and shear
walls are the same as those in Ref. 3.

6r

Fig. 3 Practical Evaluation

. Shear Wall Rotation
Fig. 2 Shear Distortion
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DEFORMATION CHARACTERISTICS OF INDIVIDUAL SHEAR WALLS

Exact Structural Analysis. In order to examine the deformation characteristics
of the shear walls located in the building frames, elastic structural analysis
was conducted for all of the model frames shown in Fig. 4, in case when those
frames are subjected to lateral earthquake forces. Stiffness matrices of all
the beam and column elements are determined by taking into account of the
flexural and shear deformations. Since each floor is assumed to act as a rigid
horizontal diaphragm in its own plane, beams have no axial deformationms,
although the axial deformation of each column is considered. Presence of rigid
zone within the beam-to-column connection is also taken into consideration.
While in shear walls, stiffness matrices proposed by Tomii et al. (Refs. 1 and
2) are used to evaluate the stiffness of the individual shear walls, in which
the shear walls are represented as four-node elements with three-degree—of-
freedom at each node.

Since ‘the distribution of equivalent static lateral forces over the
height of the building frames varies widely from the triangular-shape (as
specified in the Uniform Building Code in USA) to the rectangular one (in the
old Japanese Building Standard Law) in accordance with the different manner of
arrangement of the shear walls (Ref. 3), both of the triangular and
rectangular distributions having the same base shear coefficient of 0.2 are
used. The -same distribution of the weights as in Ref. 4 is assumed in the
analysis. Based on the direct stiffness method, unknown displacements of all
nodes and member forces were determined. Material constants assumed are that
the values of Young's modulus and Poisson's ratio of the structural elements
are E = 210 ton/cm® and v = 1/6, respectively, and a factor depending on the
form of the cross sections for the shear distortion is taken as 1.2 for the
column and beam elements.

Separation of Shear Wall Deformation. By using the technique presented in
Refs. 2 and 5, arbitrary deformation of a shear wall (represented by the nodal
displacements with three-degree-of-freedom at each node) can be separated into
three components - flexural deformation, shear distortion and rigid-body
rotation - the strict definition of which is given in Ref. 5 and is
schematically illustrated in Figs. 1, 2 and 3, respectively. From these three
components of the deformation, corresponding lateral displacements (designated
by symbols, &r, 8s and &g in Figs. 1, 2 and 3) between top and bottom of each
individual shear wall can be determined. In addition, since the lateral shear
carried by the shear wall, Vw, has been also obtained from the exact analysis
as described previously, corresponding lateral stiffness of the shear wall can
be calculated. In equation form,

Kr = Vw/6F, Kg = Vw/&g and Kr = VW/OR = ceieeeeenn (@8]

where Kp, Ks and Kg represent the lateral stiffness due to flexural
deformation, shear distortion and rigid-body rotation occurred in the shear
wall, respectively.

Deformation Characteristics of Shear Walls. Based on the exact structural
analysis, values of lateral stiffness due to flexure, shear and rigid-body
rotation given by Eq. 1 were calculated for all of the shear walls located in
each story of the model frames. Results in case when the model frames are
subjected to triangular-shape lateral forces are given in Figs. 4(a) through
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Fig. 4 Separation of Shear Wall Deformation
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Fig. 4 Separation of Shear Wall Deformation (continued)

INVESTIGATION OF PRACTICAL STIFFNESS EVALUATION

Practical Evaluation Methods for Lateral Stiffness of Shear Wall. In order to
examine the accuracy of lateral stiffness of the shear walls determined by the
practical evaluation methods, horizontal rigidities for flexure, shear and
rotation of the shear wall were respectively calculated by wusing the simple
equations. In determining the lateral stiffness of the shear wall due to
flexural deformation, two cases of deformations - single curvature deformation
as shown in Fig. 1(a) and double curvature one in Fig. 1(b) — were taken into
consideration. When the shear wall acts as line model with I—shape horizontal
cross section, corresponding values of lateral stiffness can be respectively
evaluated by the following simple equations.

Krs = 3EIw/h® and Kpp = 12EIw/h®  ..iiiiiiie e eeena(2)

in which Kps and Kpp represent the lateral stiffness in case when the single
and double curvature deformations occur in the shear wall, respectively, and
Iy and h denote the moment of inertia of the horizontal wall cross section and
vertical distance from center-to-center of edge beams. Lateral stiffness of
the shear wall caused by the shear distortion as shown in Fig. 2 can be
evaluated by the popular equation; i

Kg = GAw/Qh R L R ceeaea(3)
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where ¢ denotes the modulus of shear of the wall material and A, is the
horizontal cross—sectional area of the shear wall (Fig. 2). The value of a is
taken as 1.2. While in determining the rotational rigidity of the shear wall
due to rigid-body rotatiom, only the axial deformations of columns located
under the shear wall are taken into account. This quite simple evaluation
method is schematically shown in Fig. 3, and its lateral stiffness is given by

Kg = ko(1%/2h%) e eeeeieaniaaaa, N €3

where k. represents the axial spring comstant of the left and right columns
located under the shear wall and 7 denotes the horizontal distance from
center-to-center of edge columns of the shear wall.

The values of lateral stiffness of the shear wall given by Eqs. 2, 3 and
4 are respectively shown in Fig. 4 by using the dashed lines, where those
quantities are represented in the forms of 1/Kpg, 1/Ks and 1/Kg, respectively.
In addition, the values determined by Krp in Eq. 2 are also shown by dashed-
and-dotted lines in l/Kp versus story relations in Fig. 4. It can be seen from
Fig. 4 that the flexural and shear deformations of the shear walls which are
calculated simply by Eqs. 2 and 3 show the average of those determined from
the exact structural analysis. While except for several model frames such as
Type D, rotational displacement, 1/Kg, caused by unit shear force which is
determined by Eq. 4 gives larger evaluation than the values obtained from the
exact analysis. This fact means that the lateral displacements of the shear
walls determined by using Eq. 4 are conservative against the actual elastic
deformation behavior of most of the shear walls arranged in the building
frames.

Story Drifts. All of the story drifts of the model frames which are obtained
from the direct stiffness method were compared with those determined by using
the practical method of seismic analysis proposed by Muto (Ref. 6), in which
lateral stiffness of each shear wall was evaluated by considering the
following three cases. In the first and second cases designated by ''CASE 1"
and "CASE 2" (the results of which are represented by the symbols © and O ,
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Fig. 5 Story Drifts due to Static Lateral Forces
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respectively, in Figs. 5 and 6), Krs and Kpp in Eq. 2 are respectively used
for evaluating the flexural displacements of the shear walls. Shear and
rotational rigidities are evaluated by Egqs. 3 and &4 for both of those two
cases. While in the third case, "CASE 3" (M), rigid-body rotations of all the
shear walls are restrained although flexural and shear deformations calculated
by Kpp and Kg in Eqs. 2 and 3 are incorporated. In determining the lateral
stiffness of the individual columns, flexural and shear deformations of beam
and column elements and the presence of rigid zones within the beam-to-column
connections are taken into account in all the cases. Some of the typical story
drifs obtained are given in Fig. 5. From the results obtained, it can be seen
that the story drifts in the wupper stories determined practically are
considerably underestimated if rotational deformations of the shear walls are
restrained (CASE 3 in Fig. 5). Difference of results between CASE 1 and CASE 2
is quite small, in other words, the effect of flexural deformation of the
shear walls on story drifts can be neglected. In addition, results in CASE 1
and CASE 2 give better agreements with those of the exact analysis than
CASE 3.

Eigenvalues. By using the mass and stiffness matrices used in the direct
stiffness method, fundamental periods of vibration and modal participation
functions of all the model frames were calculated, and the results obtained
were compared with those determined from the practical evaluation methods.
Comparison of fundamental periods of vibration is shown in Fig. 6, where exact
values, gT; (Ref.4), are compared with those , pTj, determined practically in
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CASE 2 and CASE 3. In the same figure, fundamental periods determined by
Geiger's equation (Ref. 3), in which lateral stiffness in CASE 2 were used,
are also compared with those of the exact analysis by solid lines and dashed
lines. It can be understood from the figure that the fundamental periods of
vibration of most of the model frames can be practically evaluated within the
error of 15 percent, and also Geiger's equation is excellent to determine the
fundamental periods of vibration of those frames if the constant in the
equation is appropriately choosen. Such a good agreement is also seen in the
comparison of the modal participation functions as shown in Fig. 7 and member
forces (Ref. 7).

CONCLUDING REMARKS

(1). Shear and flexural rigidities of the shear walls are not widely affected
by the different manner of shear wall arrangement into building frames. Those
values are nearly constant through the height of the building and can be
approximately evaluated by the simple practical equations.

(2). Pattern of arrangement of the shear walls into the building frame has a
large effect on rotational deformation of those walls.

(3). Rotatiomal rigidity of the shear walls, which is practically determined
by considering the axial deformation of columns located under the walls, gives
a conservative evaluation against the actual deformation behavior of most of
those walls.

(4). Lateral displacements, member forces including lateral shears carried by
the shear walls, fundamental periods of vibration and modal participation
functions of those low-rise building frames in which shear walls are
irregularly provided can be approximately evaluated by using the lateral
stiffness of the walls determined from the simple practical evaluation
methods.
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