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SUMMARY

A computer program ODSEWS-2D-II (QOptimum Design of 2-Dimensional
Steel Structures for Static, Earthquake and W1nd Forces - Version II) de-
veloped at the Unlver31ty of Missouri-Rolla was used to design several
structural systems. This program can be used for the analysis and desizn
of trusses, braced and unbraced frames subjected to various types of
static loads and dynamic forces including ATC-03-6 provisions. The design
technique is based on the optimality criterion resulting from a uniform
distribution of strain and kinetic energy of the constituent members of a
system. Sample examples are provided to show some deficiencies of the
ATC-03-6 requirements.

INTRODUCTION

Ever since ATC-03-6 (Ref. 1) has been published, a considerable
amount of research effort has been expended by both the academic and prac-
ticing communities. This effort has basically emphasized the logic of
provisions (Ref. 2), comparative analyses of a structural system for vari-
ous code provisions (Ref. 3), and the conventional design of typical sys-
tems. It is well known in indeterminate structural analysis that conven-
tional design and analysis are based on the member stiffnesses assumed.

If the assumed stiffnesses are misjudged, the design cannot be improved
regardless of the number of analytical cycles and the sophistication of
the computer programs. Consequently, for a structural system with differ-
ent sets of given stiffnesses, various response behaviors can be observed.
The reliable design should be based on optimum design procedures, which
are based on mathematical programming from which an economical and service-
able structure can be obtained. The optimum design results should satisfy
a set of constraints, such as displacements, stresses, frequencies,
buckling loads, and member sizes as well as the dynamic forces recommended
in the code provisions. Thus, the stiffness redistribution in a system
can be mathematically determined according to the constraint and loading
requirements. It is worthwhile to mention that by using an optimum design
computer program, one can accelerate the design process and consequently
reduce the design time. Apparently, the benefits are inherently increased.
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Two computer programs called ODSEWS-2D-II (Ref. 4) and ODSEWS-3D
(Ref. 5) have been developed at the University of Missouri-Rolla for the
analysis and design of 2-D and 3-D structures respectively. This paper is
based on ODSEWS-2D-II for which the displacement method and consistent
mass technique are used in structural formulation with consideration being
given to the P-A effect. The structural systems can be trusses, braced
and unbraced frames. The braced systems may have single-, double-, K-,
and eccentric-bracings and the seismic inputs can be one- and two-dimen-
sional; one-dimension is horizontal, two-dimension is horizontal coupled
with vertical. The dynamic forces may be separated into three categories:
a) seismic excitations at the base, b) dynamic forces applied at the struc-
tural nodes, and c¢c) wind forces acting on the structural surfaces. The
seismic excitations are derived from the following: 1) actual earthquake
records, 2) response spectra, including those of Newmark, Seed, and
Hausner, 3) U.S. Uniform Building Code (Ref. 6), 4) Chinese Seismic Build-
ing Code (Ref. 7), and 5) ATC-03-6 including the equivalent lateral forces
with and without soil-structural interaction and the modal analysis with
and without soil-structural interaction.

OPTIMIZATION ALGORITHM

Optimality Criteria - The Lagrange equation of Eq. 1 is used for
Kuhn-Tucker conditions as shown in Eg. 2.

m BWT m ahj
L = WT + .Z xjhj’ 35 * 2 X, 5===0, (1,2)
J=1
in which X; corresponds to the jth constraint hj, Wp is an objective func-
tion, and 6; is the design variable of member i. Equation 2 may be re-

written as

m
J -
- (I )/66- (3)
J=
which is the basis for the optimality criterion method.
Objective Functions - Objective functions are the functions to be

optimized. The most common relates the elements to the total weight of
the structure as

n
W, =
T .Z YiAi (%)
i=1
in which Wp is the total weight, y; the specific weight for element i, A;
the volume as a function of the primary design variable for element i, and

n the number of structural elements. Other objective functions can be ex-
pressed in terms of costs (Ref. U4) as

z
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in which the six terms respectively correspond to the cost of members, cost
of extra size of members, connection cost of beams, welding cost of beams,
painting cost of members, and repair cost resulting from seismic damages.
The notations in Eq. 5 are Cg = steel price, v = density of steel, is =
number of members, A = cross-sectional area of members, L = member length,
Cse = connection material price, z = plastic modulus of a member, I =
moment of inertia of a member, isb = number of beams, k = dimensionless
factor, Cgy = welding price, Csp = painting price, ni = total number of
beams and columns, ir = bracing members, o = percentage of total construc-
tion cost, Cgt1 = total construction cost, N = life expectation of struc-
ture, amax = maximum normalized ground acceleration, and €j = drift coefficient.

Primary and Secondary Design Variables - In Egq. 3, 6j represents the
primary design variable of the element i. For example, a column has four
geometric properties that describe the moments of inertia about the major
and minor axes, the torsional moment of inertia, and the cross-sectional
area. The primary design variable used for columns, beams, and flexural
panels is the moment of inertia about the major axis. The secondary design
variables include any properties required other than the primary design
variable. 08hj/864 involves the derivative of structural stiffness with
respect to the design variable. The derivative of the stiffness of each
member with respect to the primary design variable will be based upon the
chain~-rule involving the secondary design variables. For simplicity, it
is common to express explicitly the relationship between the primary and
secondary variables in empirical forms (Ref. 8).

Constraint Functions - The optimization algorithm is based on the
energy distribution of the constituent members of a system for which vari-
ous constraint functions must be first established. Then the optimality
criteria can be obtained through the energy distribution based on recursion
procedures for stiffness redistribution. The individual constraint func-
tions are briefly described as follows:

a) Flexibility Constraint Function for Static or Dynamic Loads - The
flexibility constraints of a system result from the displacement limita~
tions of either certain nodes or all the nodes. The displacement con-
straint function may be expressed by using the following virtual work at
any nodal point:

n. = {0} {r} (6)
J J

in which {Qj} is the load vector with a unit value for the jth direction
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and zero values for the others, and {r} is the vector of generalized dis-

placements attributable to the static load, {R}. By letting {qj} be a
vector of the generalized displacements attributable to {Qj} and differen-
tiating hj of Eg. % with respect to the design variable, 6ij, one obtains

©

*y v 2] )
3, = - {qj} 56, {r}.

in which [Kp] includes the elastic stiffness [Kg](Z[Kj]) and the geometric
stiffness [Kgl. When the design variable is linear and [Kg] is neglected,
a[K71/86; = [K;16; and 8Wr/86; = pilini, in which pj is the mass density
and nj the linear factor relating A; to &;. For a single constraint, Eq.
3 reveals that the optimum structure for a specified displacement is the
one in which the ratio of the average virtual energy density to the mass
density is the same for all its members.

The dynamic displacement constraint function can be expressed in a
form similar to that of Eq. 7 in terms of dynamic virtual work. However,
{Q} and {r} are in terms of both time, t, and the design variable, 6. The
derivation of the constraint function can now be expressed as

ah, alM..] alk..]
J . T, 2 T T
-a—é—i = {Q‘J} {w 351 {r} - 5‘51 {r}} (8)

which signifies the virtual strain energy combined with kinetic energy of
the ith element for linear relationship of the design variables; [Mp] in-
cludes the structural stiffness, [Mg], and the nonstructural stiffness,

My ].

b) Stiffness Constraint Function for Static or Dynamic Loads - The stiff-
ness of the structure can be described by the work caused by the static or
dynamic loads, {R}, multiplied by the static or dynamic displacements, {r},
in the form of

hy =172 (R} {r} (9

because the product, {R}T{r}, is an inverse measure of the stiffness.
Thus, hj may be called a measuring function of the stiffness. The
stiffness constraints serve to measure the limitations of the stresses.
Differentiating Eq. 9 with respect to the design variables yields Egs.
10a and b for static and dynamic cases respectively.

ah . alK..] dh. alM..] alK..]
52 = -1/2ir)T aéT r}, 5= 17200} aﬁT {r}- aGT {r}}, (10a,b)
i i i i i

which may be similarly interpreted as the average strain energy of the ith
element for the static case and the average strain energy combined with
the kinetic energy of any element, i, for dynamic case.

¢) Constraint Function for Natural Frequency or Buckling Load - The
natural frequency or buckling load of any mode {nj} of a structure can be
obtained by.using the Rayleigh quotient as expressed in Eqs. 11a and b
respectively
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Differentiation of the above with respect to the design variable yields
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Primary Recursion - The primary recursion relationship is based on
the optimality criteria shown in Eq. 1 for resizing members. As a simple
illustration, consider a system consisting of ¢ beam-columns and b bracings.
The total number of elements is n = b + ¢c. The relationship between the
primary and the secondary design variables of the beam-column is assumed
to be A = CIxP, and the bracing has only the primary design variable of the
cross-sectional area, A. Thus, the Lagrange equation can be expressed as

c b m
L= 2 p.1.C.IT., + _Z pi1iAi - 'Z Ah. (13)
=1 i=1 j=1

Let the design variables Ixj and Aj be denoted by 6;i, then a general ex-
pression can be written as 6 = Aa in which A is called the scaling factor
and o the relative design variable. For beam—columnsl let pj = 619h/36¢4,
ui = Ay, Ty o= PyW o= pi1lC1PluP AP 1,andt£ = ti/(AplPi), then the recur-
sion relationship between cycles v+1 can finally be obtained by using an

iterative procedure, for p active constraints, as

1

1
P B 1 s
(aiA) = v z Cj Pi+1 (—l)P + (;%) Pi+1] (14)
= v

1

v+1 1 1 i

in which Cj = lZ [lellﬁl(ahJ/aél)], and n{ = number of active elements.
Other approx1maﬁe approaches are to select the largest number of uj/t{ for
each loading condition and each active constraint (Ref. 5) or to use the
least square method for determining the Lagrange multipliers (Ref. 8).

Secondary Recursion - The secondary recursion is used to achieve
better optimal results after a local optimal has been obtained. This re-
sults from the fact that the primary recursions are coupled with the
scaling of the constraints. The secondary recursion is based on the
gradients of the active constraints.

SAMPLE EXAMPLES AND OBSERVATIONS

Fifteen-Story One-Bay Frame - The 15-story, one-bay steel frame
shown in Fig. 1 is designed according to the equivalent lateral force pro-
cedures in Chapter 4 of ATC-3. With regard to the recommendations in the
provisions, the design is based on the response modification factor, R = 8,
the deflection amplification factor, Cq = 5.5, and the drift constraint,
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Az = 0.015 hgy, in which hgx is the story height below x (details in Case

1 of the next example). In calculating the seismic forces, the coeffic-
ients of the effective peak acceleration, Ay, are changed as 1,3,5, and 7T,
and those of the effective peak velocity, Ay, are changed as 3,5, and 7 for
three soil profile types. The optimum structural weights of the 36 design
cases are shown in Fig. 2. The seismic design coefficient, Cg, is shown

in Fig. 3, and the fundamental periods of the design results are shown in
Fig. 4. Note that all the periods in Fig. 4 are greater than the approxi-
mate building period, Ty, as well as 1.2 T4, which is the upper bound that
is supposed to be used in determining the lateral seismic forces as indi-
cated in ATC-3: "The fundamental period of the building, T, in Formula
4.2, Cg = 1.2 AyS/(RT2/3), may be determined based on the properties of the
seismic resisting system in the direction being analyzed and the use of
establishing methods of mechanics assuming the base of the building to be
fixed but shall not exceed 1.2 Ty.---." Because T in Formula 4-2 becomes

a constant of 1.2 Ty, the seismic design coefficients vary only when Ay

and S change. Figure 3 includes the Cg obtained from Formula 4-3 of Cg =
2.5 Az/R at Ay = 1 and 3, Ay = 5 and 7 for both soil types 2 and 3. But
Formula 4-3 does not need the period T. Based on the optimum design re-~
sults, sophisticated mechanics need not be used to find the period because
it is 1.2 T, governing the design. Apparently, further studies will be
necessary to verify whether the equation Ty = CThn3/“, in which C7 is equal
to 0.035, and hp is the height of the building, for steel frames is realistic.

The eccentricity, which is measured from the center of the bay to the
outside of the bay and induced by the resultant of the seismic forces and
the vertical loads at the foundation-soil interface, is 5.025 ft (1.532 m),
6.025 £t (1.836 m), and 7.545 ft (2.300 m) for Ay = 7 and Ay = 7 corres-
ponding to soil types 1,2, and 3 respectively. These numbers are less than
L/% = 7 £t (2.134 m). The largest stability coefficient (© = PyxA/(VxhgxCqd),
in which A is the design story drift, Vx the seismic shear force acting be-
tween level x and x-1) for all the design cases is 0.015, which is much
less than the upper bound of 0.1.

Fifteen-Story Two-Bay Frame - For a more general set of conditions,
one additional bay is added to the structure of Fig. 1 as shown in Fig. 5.
This case is designed for four cases: 1) ATC-03 equivalent lateral forces
for A = 7, Ay = 7, and soil type 3 with C4q = 5.5, R = 8, allowable story
drift Ay = 0.015 hy < 8xi - 6xi-1 and 6yxi = C4bxei in which 6yej is the
actual deflection at the ith floor from analyses; 2) ATC-03 modal analysis
procedures with the same data as given in case 1, 3) UBC Code with an
allowable displacement of 0.005 hy; and 4) Chinese Code on the basis of
0.7 apax/T in the spectrum. The drift and displacement constraints are not
specified in Ref. 8 or steel structural specifications (only specified for
reinforced concrete system Ref. 9). An allowable drift is employed on the
basis of Ay = 0.015 hy/Cq X 6xpi - Oxei-1 as in the ATC-03 requirements.
Among a number of design results, the structural weights are 118.5k
(527.088 kN), 98.5Tk (442.382 kN), 81.43k (362.201 kN), and 132.89k
(591.095 kN) for cases 1,2,3, and 4 respectively. The Chinese Code re-
quires the heaviest, which, however, could be different if various drift
requirements were to be assumed. The shear envelopes are shown in Fig. 6.
The increasing envelope associated with UBC is due mainly to 0.07 TV (T =
natural period, V = base shear) required at the top floor.
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The design results of Case 1 are controlled by 1.2 Ta for the most
required forces in the procedure. One may consequently conclude that no
eigenvalues need be calculated for this structure associated with other
Av's, Aa's, and soil types. It may be worthwhile mentioning that the ec-
centricity is 5.664 ft (1.726 m) and the stability coefficient is 0.019%4,
which apparently should be smaller for other Av's and Aa's. The above
examples are used to illustrate various cases of parameter studies. It is
apparent that the optimization methods within the computer programs can be
used for engineering practice in order to accelerate the design process and
to evaluate different layouts of a structural plan. They can also be used
for academic research in the areas of various code provisions, comparative
studies of seismic inputs including the influence of interacting ground
motion, parameter studies of the stiffness distribution of a typical sys-
tem,and others. These studies can be conducted with and without risk.
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