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SUMMARY

This paper presents general procedures for design of multiple framed
tube high rise steel structures in seismic region. The analytical
methods and design procedures are outlined. Special considerations such
as beam/column joints and member proportions are discussed. Three
recent high rise projects completed using the multiple tubular concept
are presented followed by the discussion on relative merits of multiple
tubular systems.

INTRODUCTION

The “framed tube" system in high rise construction which has been widely
used for structures in strong wind regions in the past two decades,
usually consists of closely spaced wide exterior columns tied at each
floor level with relatively deep spandrel beams, simulating a hollow
tube.(1) This tubular concept is generally economically attractive and
torsionally rigid, and also provides greater flexibility in space
planning since most framed columns are located at the perimeter of the
building. ‘

The efficiency of the framed tube depends on plan dimension and aspect
ratio. The loss of tubular efficiency in structures which are
relatively long and narrow in plan is very apparent due to the shear lag
effects.(l) Tubular efficiency can be improved substantially using the
multiple tube concepts, as illustrated in Figure 1.

Multiple framed tube system consists of two or more framed tubes which
can be various in.form. The most common ones are rectangular and
triangular. Three recent high rise projects completed using this system
are presented. ‘
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ANALYTICAL METHODS

All analyses were performed using a version of the three dimensional
analysis computer program ETABS (Three Dimensional Analysis of Building
System, Extended Version).(6)(7)(8). The structural frames were modeled
single 3-D space frame. Three independent degrees of freedom were
permitted for each level; each floor was treated as a diaphragm rigid in
its own plane.

All girders and columns of the multiple framed tube were modeled as
discrete elements with nodal points at the centerline of intersecting
elements. Full depths of members were used to describe the '"rigid"
panel zones at each node.

Critical sections for member force and stress calculations in the
columns and girders were taken at the face of each rigid panel.

However, the stiffness matrix formation considered only 507% of the full
size of the rigid panel in order to closely approximate the actual
behavior of the structure. Gravity loads (dead and live loads) were
considered simultaneously with each of the following lateral load cases.

l. Wind Analysis: Wind forces prescribed in building codes (Uniform
Building Code(3) or applicable city codes) perpendicular to two
orthogonal faces of the structure were applied to the building
frames. Overall drift and inter-story drifts were limited to 0.0025
times the overall building height and story height respectively.

2, Code Static Seismic Analysis: A set of equivalent static seismic
forces were calculated based on the applicable codes using K = 0.67.
These forces were applied to the building frames in two principal
directions, each eccentric to the center of mass by an amount of 5%
of the maximum building width. The drifts were limited to 0.0033H.

3. Three Dimensional Spectrum Analysis: Site response spectra
including accelerations, velocity and displacements for lower level
and upper level of earthquakes, commonly known as maximum probable
and maximum credible earthquakes,(4) with damping factors of 2%, 5%,
7%, and 10% were generated by geotechnical consultants. The lower
level earthquake has a probability of exceedance of 50% in 50 years.
The upper level earthquake has a probability of exceedance of 10% in
100 years. The building frames were analyzed using CQC (Complete
Quadratic Combination) method(7) and the drifts were limited to
0.0075H for lower level event and 0.015H for upper level event.(5)
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DESIGN PROCEDURES

Wind Design: All framed members were checked per AISC(9)
specifications on elastic design, with 337 increase permitted in the
allowable stresses under combined loading of wind and gravity loads.

Seismic Design: All framed members were designed per AISC

specifications for combined seismic and gravity loads and to satisfy
the requirements for ductile moment resisting frames:

e

b.

Code Static Seismic Force: All framed members were designed
with 33% increase permitted in the allowable stresses.

Maximum Probable Spectrum: This is actually the design spectrum
with loading combinations of DL + LL + EQ, and 0.8DL - EQ and
the structure to remain elastic.

Maximum Credible Spectrum: This spectrum is used to determine
maximum building deflection and P/ effects, as it relates to
frame instability.

Special Consideration: The corner columns to be designed to

resist two directional seismic effects, i.e., 100%Z of the
seismic force in the principal direction combined with 307 of
the seismic force produced by the orthogonal components. For
those columns, which are not a part of the frames, they were
checked for allowable stress level, for DL + LL or DL + LL
combined with P/\ moments with 337 increase in allowable
stresses permitted, where A= 3/K times inter-story
deflection from code static seismic forces or /= inter-story
deflection from maximum credible excitation, whichever is
greater.

In building with ductile moment resisting space frames, strong
column-weak beams concept is desirable, i.e., sum of the plastic
moment capacities of the columns above and below the joint, when
reduced for axial loads, is generally greater than the sum of
the plastic moment capacities of the beams.(4) Hence, the
proper balance of sizes between beams and columns at the
beam/column joints are essential, especially in tubular building
where deep framed beams are required for stiffness to meet drift
criteria, but carry very little gravity loads. On the three
multiple tubular buildings designed, 36" deep nominal wide
flange members were used for framed columns and beams. By using
high strength, grade 50 steel for framed columns, grade 36 steel
for framed beams, and proportioning for columns two or three
sizes heavier than the connecting framed beams, the total
plastic moment capacities of the columns were about 40% greater
than the plastic moments of the beams when reduced for axial
loads. Continuity plates and doubler plate were provided at all
framed joints to ensure full plastic capacities of the
connecting beams are developed,(ll) as shown in Figure 2.
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DISCUSSION

The Raymond Kaiser Engineers building in Oakland, Maquire
Partners/Crocker Center, South Tower in Los Angeles and 345 California
Street Building in San Francisco, California are the three recent
projects using the multiple tubular concept. Each project represents a
unique case because of the plan configuration of rectangular,
rectangular/triangular with relatively wide face. The building height
and plan dimensions are shown in Table 1. With this system, all framed
columns are utilized efficiently. As shown in Figures 3, 4 and 5,
gravity loads are distributed rather evenly through out the frames,
regardless what the floor tributary areas on the columns might be. All
framed columns, in each case, also participated well into the tubular
action to provide fairly efficient framed tubes.

Seismic forces, static or dynamic, were the governing factors for framed
member strength design. However, due to the wide building face, the
drift requirement under wind loading in the transverse directlon was the
governing load case for overall frame stiffness.

Moreover, the member properties for an optimum framed tube generally
requires that all framed members at a particular level are approximately
of the similar size and weights. This creates very stiff frames in the
longitudinal direction. The current building code procedures do not
fully address this phenomenon and hence result in a non-conservative
static lateral load.

In all above projects, the code static seismic forces are much smaller
than that obtained from dynamic analyses, as shown in Table 1.

In conclusion, the multiple framed tube concept can be effectively
utilized in the seismic region. Properly proportioned framed members
will result economical structures counsistent with the requirements of
strength, stiffness and ductility prescribed in the current building
codes and engineering practices.
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