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SUMMARY

The Finite Segment Method combined with approximate expressions
representing the moment-axial force-curvature as well as axial force-moment-
axial strain responses of a beam—column segment is found to be a valid and
effective method for inelastic cyclic analysis of tubular members and frames.
In this paper, the proposed procedure has been applied successfully in the
analysis of offshore tubular members and frames in the post-buckling range as
well as under cyclic and reversed loading conditioms.

INTRODUCTION

Several methods have been developed in the past to predict the post—
buckling and cyclic behavior of beam—columns and frames. These include finite
element models, physical models, numerical integration methods, and combined
phenomenological methods.

The method proposed here is based on a concept similar to the finite ele-
ment method combined with the tangent stiffness approach, using approximate
moment—axial force-curvature and axial force-moment-axial strain expressions
to represent the cross sectional properties of a beam—column segment, or the
so—called Finite Segment Method (Ref. 2). So far, this method had not been
successfully used to solve the beam—column problem with post-buckling or
post-maximum branch. In this method, the actual beam—-column is physically
replaced by an assembly of finite segments. As a result, the beam-column can
now be formulated and solved approximately in terms of the behavior of these
segments. This approach may be considered as a physical interpretation of the
finite difference method as applied numerically to solve differential equa-
tions. This method can be applied for general structural systems.

GENERALIZED STRESS-STRAIN RELATIONSHIPS

The generalized stress and generalized strain relationships required in
an elastic-plastic beam—column analysis are moment—axial force-curvature
(M-P-¢) and axial force-moment-axial strain (P-M-¢.) relations. Recently, Han
and Chen (Ref. 3) proposed the refined curve-fitting expressions for tubular
sections with constant axial force or constant moment loading paths (so-called
constant curves). In this study, these closed form expressions are adopted
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for an arbitrary loading path. However, some modifications in the expressiong
of tangent axial and bending modulus reduction factors, B and B_,and of

unloading and reloading branches are necessary so that they can be app%ied for
an arbitrary loading path.

Curve—fitting expressions for M-P-¢ of the loading branch may be
expressed symbolically, ’

= h(p, o) W

where m = M/M , p = P/P_ and ¢ = ®/¢ are normalized by their corresponding
initial yield’quantitied. y

The tangential plane at an arbitrary state of p and ¢ can be calculated
by differentiating Eq.(l) i.e.,
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Since there are an infinite number of tangent values, the tangent stiffnesses

required in the analysis are therefore dependent on the value of d|p|/d¢ or
possibly the finite step A|lp|/A¢. Unfortunately, the value of Alp|/A¢ can not
be determined unless we know the subsequent new state of configuration of
deformation. In‘order to apply this method for analysis, it is therefore
necessary to go through some iteration process.

Curve-fitting expressions for P—M—EO relations of the loading branch can
also be expressed symbolically as

& = n(mp) (3)

The tangential plane for an arbitrary state of p and m can be calculated

by differentiating Eq. (3) with respect to eo.
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For both the unloading and reloading branches, the doubly symmetric
assumption is adopted.

 INCREMENTAL STIFFNESS APPROACH FOR NUMERICAL SOLUTIONS

The incremental force~deformation relationship for a structural member
can be written as a set of differential equilibrium equations

(K] {du} = ([}, + [K]) {du} = {af} )
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or, when introducing finite steps

[K]T {tu} = ([K]C + [K]G) {a} = {af} (6)

[K ] may be called the tangential stiffness of the system. This stiffness is

a "function of the current configuration or possibly of the entire history of
deformation.

Tangent bending stiffness B and tangent axial stiffness B, are assumed
to be functions of d|p|/d¢ and d%m]/dp while the axial force of a segment,p,is
constant in the geometrical stiffness [K.] during loading. Therefore, to
trace the gradient of the deformation path, the tangent stiffness matrix [K_]

must be solved iteratively as mentioned previously. This iteration may e
achieved in the following manner (Fig. 1);

1. Set the tangential plane for B and t% based on the current confi-
guration (p, m, ¢) for each segment.

2. Calculate the tangential values of dl, 82 based on the previous
values of Ap/A¢ and Am/Ap

3. Assemble segment stiffness matrix and build structural stiffness
matrix, [K]T

4. Apply load {Af} and solve for {Au}

5. Calculate the values of #4p/Ag, Bz,Am/Ap and 51 based on a new confi-
guration of each segment

6. Check old and new values of Ap/A¢, ;5, Am/bp and Bl

7. Repeat steps (2) to (6) until the specified tolerance is met

As tangential planes of moment—thrust—curvature (M-P-¢) and thrust-moment-
axial strain (P—M—eo) space surfaces are fixed in the elastic range, B, and B
are always unities and no iteration is involved during the loading process.

AUTOMATIC LOAD CONTROL

Incremental techniques are characterized by the continuous accumulation
of truncation errors for non—linear problems. The accumulated error may be
affected by the number of load steps and the value of the incremental load
adopted in the process. This shortcoming may be somewhat relieved by an
automatic load control method proposed by Bergan et al (Ref. 1), which keeps
the rate of error at some level in the computer analysis.

Another practical problem associated with an incremental solution of
post—buckling or post-maximum branch like beam-column behavior is the neces-
sary sign change of the incremental load when an extreme point of the load-
displacement curve has been reached. In Fig. 2, a typical behavior of an axi-
ally loaded column is shown. Generally, the descending branch can be detected
by checking the sign of the determinant of the structural tangent stiffness
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matrix. Here, the easiest way is to apply this procedure to deal with this
situation instead of calculating the determinant of the matrix. With the
tangent stiffness matrix described in the previous section, the solution of
displacement, u, will follow the path o—a-b with increasing load, Ap. The
path a-b actually represents the negative sign of the determinant of the
tangent stiffness matrix. Actual behavior o—a-c can be traced by decrementing
the load AP after detecting the sign change of the incremental displacement,
M. The sign of Au is some measure of the positive definiteness of the incre-
mental stiffness. This situation can also be explained by Fig. 3. Solution
path o-a-b can be obtained by increasing AP without enforcing the total
equilibrium condition. Actual solution path o-a—-c can be traced by decrement-
ing AP after reaching the extreme point a. If point a is exactly at the
extreme point numerically, a solution cannot be obtained because the incremen-
tal tangent stiffness is zero. But this situation did not arise in this
study.

NUMERICAL RESULTS

Cyclic behavior of an axially loaded tubular column with constant lateral
load 0.4Q and an initial imperfection of 0.1% L is shown in Fig. 4 and is
compared with Han and Chen’s analytical (Ref. 3) and Sherman’s test results
(Ref. 7), among others (Ref. 4,5,8). Unloading is set to begin with the same
axial shortening of 1.3 inches. Reloading for the present analysis is set to
start when the tangent bending rigidity reaches to zero.

Portal Types of Beam-Columns

In Fig. 5, cyclic analysis by the present method of portal type beam
columns with constant axial force of P/P_ = 0.16 is shown with Sherman’s test
(Ref. 6) and Han and Chen’s analytical refults (Ref. 3).

It is seen that all these three curves are relatively close to one
another in their loading and unloading branches. After one cycle, test data
shows a degradation of lateral load capacity which probably results from local
buckling.

Framed Structures

Figure 6 presents numerical results of axial force-displacement relations
for a simple framed structure with the effect of end restraint from beams.
The initial load increments in numerical analysis are 0.8, 0.35, 0.3 and 0.35
kips for. the analysis of frames with L. equal to 0.5L_, L., 2L_ and infini-
tive. The change ‘of the length of beam, ﬁ shows clearly the ef%ect of end
restraint on the beam-columm behavior where L, = 0 represents fixed—ended and
L. = « represents pin-ended columns in axial 1load and deflection relations.
Axial force and deflection curves of descending branches for restrained beam-
columns lie between those for pinned and fixed end cases. Decreasing the

length of the beams results in a parallel upwards movement of curves in des-
cent branches.

CONCLUSIONS

The following conclusions can be made.
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The combination of Finite Segment Method, generalized stress—strain
approach, incremental stiffness approach and automatic load control tech-
nique is a valid and effective method for computer—-based beam-column and
frame analysis. It has been applied successfully in the analysis of
tubular beam-columns and frames with arbitrary structural systems with
members having large values of shape factor, and different end condi-
tions. But there are limitations for this model. These are the limita-
tions on the length of beam—columns with post=buckling branch and on the
analysis of the post—fully plastified branches in tensile loading, where
no elastic rigidity can be expected.

Sudden changes of tangential axial rigidity in small moment regions of
adopted curve fitting axial force-moment—axial strain relationships cause
convergence difficulties when analyzing short beam—columns where post-—
buckling behavior is expected (KL/r<70).

The concept of variable axial force and moment in setting tangential
bending and axial rigidities of the segments gives fair results of beam—
column and frame analysis when using an incremental stiffness method.

Doubly symmetric assumption of moment—axial force-—curvature and of axial
force-moment-axial strain relationships in wunloading and reloading
branches of the sectional properties appears to be satisfactory in
predicting test results of beam—columns as a whole.

In order to assess the local buckling behavior reported in some post-
buckling and cyclic experimental studies, further studies are needed to
predict the effects of geometric changes in cross section of pipe on the
moment-axial force-curvature—axial strain relationships.
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Axial Load, P (kips )

o]

A “__
3 P/P, «0.16
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t =.092"(23cm)
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Figure 5.
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Finure 6. -Axial Load - Displacement Relationships for Simple Frame
with Different Length. of Beams
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