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SUMMARY

This paper presents a possible method of mathematical model formulation
of the interaction between thin wall cylindrical reservoir and an ideally in-
compressible fluid, during horizontal and vertical ground motion. In mathemati-
cal modelling of the fluid the boundary element method was used. Basic theore-
tical assumptions of the boundary element method have been given. In case of
an ideal nondeformability of reservoir walls it is assumed that the reservoir-—
fluid system moves horizontally with constant acceleration.

However, the walls of the cylinder reservoir are deformable. For this case
of interaction between the fluid and reservoir body, basic theoretical prin-
ciples and example have been given treated for horizontal sinusoidal ground
motion., The objective of this paper is to present the principles of the boundary
element method and the possibility to apply it in analysis of similar problems,
as well as to provide comparison with the finite element method.

INTRODUCTION

The interaction between two different media such as water fluid and cylin-
drical reservoir walls has always been an interesting subject, taking into
account the fact that this type of structure has increasingly been used in
industry, at present. There are more methods and approaches to solve this prob-
lem. However, the application of the boundary element method in modelling of
the water fluid has certain advantages, compared to other methods, having in
mind that it operates with contact surfaces for which the boundary conditions
of fluid motion are known. The compatibility conditions of fluid-cylindrical
walls motion define the fluid-reservoir interaction in a way which is based
on additional mass principles or the principles for definition of the water
pressure, for each step of motion of the system. The effect of ideally rigid
walls of the cylindrical reservoir and the effect of wall deformability have
been shown through examples. Comparison between the B.E method of water fluid-
reservoir problem and the methods based on the F.E type discretization of 3D
water domain (Galerkin”s method) has also been discussed in this paper.
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Introduction to the Problem, Boundary Element Equations
Based on Weighted Residual Method

The equation of motion of incompressible fluid with a relatively small
velocity amplitude is given in the following Laplacian form:
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where w=w(x,y,z) is a water pressure function.
This equation together with the boundary conditions completely defines the
problem of fluid motion. The boundary conditions are either known potentials
w, the so called natural boundary conditions, or known normal derivations 3w/dn
i.e., the so called essential boundary conditions. It is known from the mathema-
tical analysis of the weighted residual methods that the following equation
exists:
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where the symbols L( ), L1(. ), L2( )are certain operators, for example, if
we apply the operator L under the function w=w(x,y,z) we can receive some other
function p=p(x,y,z). F=F(x%,y,z) is known as a weighted function. The integrals
over domain Q are 3D integrals, while integrals over domains Q1 and Q2 are sur-
face integrals. In the case of the given Laplacian equation (a) and the types
of the described boundary conditions, the operators L and Ll are the following:
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The operator L2 defines the same function as a function on which it is applied.
If we select the form of the weighted function F=F(x,y,z) so that the function
satisfies Laplace equation (a), the volume integrals over the space domain
in the equation (b) will vanish and we will have the equation in which only the
surface integrals over surface domains Q1 and Q2 exist. Fig. (1) shows the space
domain @ and surface domains Q1 and Q2 for which the boundary conditions are
known. Function F=F(x,y,z) satisfying the Laplace equation (&) is known as a
fundamental solution function and for a 3D domain isotropic problems is defined
as:

F(x,y,2) = —t (c)
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where r=r(x,y,z) is the distance between some observed point "i'" at the surface
domains and any point over domain Q. After integrating of the equation (b) and
. assuming that the fundamental function satisfies the Laplace equation over the
whole domain 2 , except for a particular point "i" at the surfaces Q1 or Q2 in
which we have unit potential, or unit derivative, the equation (b) becomes:
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The equation (d) is a fundamental relation on which the bouhdary element met-
hod is based.
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Discretization Procedure, Typical Boundary Equation for Node "i"

and Boundary Element Definition

Fig. ( 2 ) shows 3D domain ? with surface subdomains Q. and Q,. For the
subdomain the natural boundary_conditions are known an& for subdomain @
the essentidl boundary conditions Bw/an are known. Discretizing subdomains
and @, in a form of small surface areas, so called boundary elements, we can
express the typical boundary element equation for the node "i:

1 oF
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where:
F = F(X,y¥,2) is a fundamental function satisfying Laplace equation:
2 2 2
9 g + 3 z + 3 g = —6i e (2)
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~%( ) is a derivative corresponding to the normal at surfaces for the i-th node.
écause we have discrete form of surfaces Q. and 92, the integrals over sub-
domains Qi and 92 (see equation (1)) become:?
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Now equation (1) can be expressed:
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vt wtdo = 1 s LF . e ()
L=1 o L=1 o
For 3D isotropic domain the fundamental function F=F(x,y,z) is given:
= _ 1 - 1 ,
F=Fxy,2) =47 4t (X,y,2) ERC

where r = r(x,y,z) is a distance between the observed node "i" and any node "J"
with the coordinates x,y,z:

2 2 2
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Normal derivative can be expressed:
9F _ 3F OF 9F
5a - 3%+ cosv + 3y cosB + 3z CosY eee (7)

where cosa, cosf, and cosy are the normal cosines for the node "i
The partial derivatives 3F/39x, 3F/dy, 3F/3z can be expressed:
X. - X y. -y 5F z. -z
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The typical boundary equation (4) for the node "i" is expressed as a function

of the integrals over the B.E. surfaces. For the purpose of integration 8 node
isoparametric B.E. is taken (see Fig. (3)). The potential w and its derivative
3w/d3n distribution in the B.E. domain is given as:
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w=w&, n = I wk.D¥Nk(g, n)
k=1
k=ME
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and coordinates are expressed as:
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The normal cosines at the node "i" of the 8 node B.E. are defined:
_ 9y dz _ 9y 3z _ 92 9% _ 9% . 9z
T TFE  Ton T Tan C ee ST Tan 3£ ° an
__ 3% 3y _ ax 3y - (D
3¢ ° dn n’ g

n = Unx2+ny2+nz2 cosa = %5— cosB = %X cosy = EE .o (12)

Now equation (4) can be expressed:
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For simplicity we can write:
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and:

_ 1 - N . _ n
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Finally, equation (13) becomes:
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where: NBE is a total number of boundary elements
MEL is a number of B.E. nodes. In our case MEL=8
N is a total number of boundary nodes.
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we can write N equations similarly to the equation (15). Matrix expression of
these equations can be written as:
dw

é'E—E'Tﬁ . vae (16)
Again, we have N linear equations with N unknowns either potentials w,or deriva-
tives 3w/3n. In general case, the known boundary conditions can be natural
values of potential w or derivatives 3w/dn. Having this situation, the unknown
values of w or 3w/9n can be at the both sides of the equation (16). Rearrang-
ing the equation (16) so that the unknowns will be at the left side we have
the following linear equations:

F.Y=Y ¢ F))

in which Y is unknown vector of a potential w. and derivatives 3w/dn and has
to be solved:
-1
Y=F . gﬂ ... (18)
In the case of non rigid cylindrical walls the equation of motion of the entire
system (fluid and cylindrical structure) is given by:
M.r +C.t+K.r+W=¢ .. (19)

voir and damping matrix.

W is the hydrodynamic water pressure force vector.

r is the total acceleration vector.
The hydrodynamic force vector W can be defined using the following matrix opera-
tions:

where: M, K, C are the mass matrix, stiffness matrix of the cylindrical reser-

T . rn r=A.r1r Pn = E?X . x Wn=A.Pn

T T T
.Wn =2 .AH.M.x cee (20)
where: Pn is a vector of the normal water pressure at the discrete nodes.
rn is a vector of the total normal accelerations at the discrete nodes.
A is the cosines transform matrix
A is a tributary area matrix for the associated nodes.

HT is the "influence'" matrix. The coefficients of H matrix can be defined
using the following approach:

. Using the B.E. mathematical model, and giving at the node "i" the boun-

dary condition that dw./dn = 1, and for all other nodes 3w./dn = 0 we can solve
and define the partial water pressur coefficients at all nddes caused by unit
normal acceleration at the node "i'". The nodal water pressure values for that
case define the matrix H coefficients for "i'"th row. Repeating N times the
solutions of the system for other nodes we can define all H matrix coefficients.
The further procedure of solving the equation (19) is a standard process in
which the added mass technique can be applied. The added mass matrix is defined
as:

Ma = XT . A E? <A . (21)

- - DY
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Examples and Improvement of Theoretical Procedures

As an example, a cylindrical reservoir is taken with diameter D=20m and
height h = 10m. The fluid in the reservoir is assumed to be incompressible.
Also the reservoir walls are assumed to be rigid. The contour domains at the
surface of the fluid, bottom and cylindrical wall are shown in Fig. (4). The
boundary element discrete mesh is given in Fig. (5). Reservoir system, in the
first case is subjected to the horizontal excitation. The boundary conditions
for this case are given in Fig. (6), picture (a) and (b). The water pressure
distribution at the sections 1-1, 2-2 and 3-3 are givén in Fig ( 6), picture
(¢) and (d). For the case of vertical excitation the boundary conditions are
given in Fig. ( 7), picture (a) and water pressure distribution diagram at the
cylindrical wall is given in picture (b).

CONCLUSTIONS

The paper presents theoretical principles of the B.E. method and provides
representative examples in support of the solution consistency and accuracy of
the fluid-structure interaction problem. As an example a case of rigid cylin-
drical wall reservoir has been treated taking that the system is moving both
horizontally and vertically under constant acceleration distributiom of lg,

for each direction, separately. Assumption has been made of incompressible
fluid.

It is concluded that a consistent water pressure distribution exists while
the results correlate to the known theoretical method results for similar con-
tour conditions. For deformable reservoir walls, a brief presentation has been
made of the principles on which the fluid-reservoir interaction is based. The
added mass process has been suggested. Comparing this procedure with the F.E.
procedure for solving this type of problem is concluded:

. In the B.E. method we deal with discrete system of nodes and B.E. re—
lated only to the surface domains, while the F.E. deals with space discrete
fluid models. Therefore, it should be expected that the total degree of free-
dom of a F.E. system compared to the B.E. system is larger.

. However, the B.E. method operates with nonsymmetric matrices so that
bandwidth and symmetry can not be used. The B.E. matrices are full matrices
of order N x N where N is the total number of boundary nodes of the system.

. The use of B.E. method is also favourable from a viewpoint that we
operate with contact areas which is of interest in the case of interaction
problems. ‘

. The definition of H-matrix terms by B.E. method is relatively simple
while the computation time is reasonable.

. The basic conclusion is that the use of B.E. method for solving of in-—
teraction problems is possible and in some cases rather efficient.
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Fig. 2. Discretsthem of the surface domains N 0r 7
typical boundary node “i” and boundary element @

X
Fig.1. 3D domain N and surface subdomain N2 and Ny
where the natural as well as essential bourdary
conditions are known
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Fig. 3. Thetypical 8 node boundary elernznt

(c) Watter pressure distribution at the
cilindrica! wall across the sections
1-1 and 2-2

(cl) Watter pressure distribution at the sitindrical

wall section 3-3
Fig. 6. Water pressure distribution at the verziral aindrizal wall duc to horizonta. (x=x}
muotian, the reservoic is assuaed to ¢ rigid. The boundary surface conditinng =

given in the picture (a) aidd (h)
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Surface contour B.E. mesh’

Vertical wall contoir B.E. mesh
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Fig.5. Boundary element discrete mesh for the surface regions

=N

g
3

x|

: oo

[~}

S| A'f‘z §§§§

W 57 03%

2 % %
9.30 .00

(b)

Fig. 7. Water pressure distribution at the vertical cilindrical walls due to vertical
motion. The reservoir is assumed to be rigid. The boundary conditions
are given in the picture (a)
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