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SUMMARY

The dynamic response of thin elastic cantilevered c¢ylindrical tanks
partially filled with liquid related to horizontal excitations is studied.

The circumferential section of the tank is not a perfect circle and the
radius is represented by a Fourier series. Fundamental equations are based on
Novozhilov's shell theory for the description of tank motion, which considers
the nonlinear strain-displacement relations, and a classical potential flow
theory for the coupled hydrodynamic forces.

Numerical results show the effects of modes of a high order to the oval
deformations of circular section.

INTRODUCTION

In the design of circular cylindrical shell tanmks containing 1liquid,
it is necessary in many cases to know the interaction of the shell with the
liquid to earthquake excitations. This problem has been studied by many
investigators and most previous analytical work has been based on the assum-
ption which only the first mode of circumferential wave-perfect circle, has
been excited by horizontal ground motion because of the orthogonality of the
circumferential displacement functions. However D.P.Clough and A.Niwa have
presented in 1978 (Ref. 1) that significant out-of-round displacements have
been observed in tanks and the base section axial stresses associated with the
out-of-round displacement of the fixed-base tall tank are about ome-fourth the
magnitude of the basic nondistorting stress component. They have indicated
initial imperfections of the tank geometry as the cause.

To explain this experimental results, authors (Ref. 2) and A.S.Veletsos
et al. (Ref. 3) have respectively presented the analytical study in 7th WCEE
in which the radius of tank has been expanded in a Fourier series to consider
the coupling of the first mode with modes of a high order. But it has been
clear from these results that responses corresponding to experimental results
could not been obtained by the analysis using limear shell theory.

Then in this report, the coupling phenomenon of circumferential wave
modes of a high order related to liquid-tank system with imperfect circular
section are formulated and solved analytically by a nonlinear shell theory
and a harmonic balance method (Ref. 4,5). Fundamental equations are based
on Hovozhilov's shell theory , which considers the nonlinear strain-displa-
cement relations, and a classical potential flow theory for the coupled
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hydrodynamic forces. Substituting these equatiomns to the Lagrange's equations
and applying harmonic balance method, these equations are reduced to a systenm
of nonlinear simultaneous algebraic equations with respect to the components
of circumferential wave mode for each order. Solving these equations, the
stationary response solutions to harmonic excitations are derived.

DERIVATION OF NONLINEAR GOVERNING EQUATIONS

The System Considered

The tank is thin and elastic shell and contains 1liquid. The coordinate
system of a free-fixed cylindrical shell to be investigated is as shown in
Fig.1l. The radius of the shell is represented by the following Fourier series
because of the imperfect circular section.

R
a(9) = a, + é a,cosj¥ + ) a;sinj'd
j=1

2 (1)

where ap is the radius of the shell with perfect circular cross section and
aj, aj are the coefficients of the initial imperfection.

In this study, restricting the equations given by WNovozhilov to the
circular cylindrical shell, the strain-displacement relations take the form

(Ref. 6). ' .
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Assumed Displacement Modes of Shell

If we expand the displacements of Eqs.(2.a-c) into Fourier series, the
coupled terms between the different harmonic numbers take place. Then, the
decomposition of the equation of motion associated with the classical mnormal
modes can not be applied. However, if the effects of nonlinear terms are
assumed to be small, the coupled displacements can be approximated by the
linear combinations of normal modes obtained by the analyses of linear free
vibrations for the circular cylindrical shell with imperfect section. Then,
the displacements may be expressed as

MN
U(X’S:t) = 7 u(mn)<x;8‘)n(mn)<t)

(e
M'N'
v(x,¥,t) = (mr%;v(mn)(x’\g‘)n(mn)( t)

wix,%,t)

MN'
(mr§=1 W(mn)(xy's")n(mn)( t) (3.3."0)

where Tmn(t) is the (mn)-th orthogomal generalized coordinate. Ufmn)s  Vimn)s
Wemny in Eqgs.(3.a-c) are given by the combinations of normal modes based on the
Rayleigh-Ritz method. That is, U, Vimm, Wmn aTe expressed as
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where C(ﬁ? BﬁTL A" are generalized coordinates, which are obtained as the

eigen vectors for the linear vibration analysis of the system, £i(x) is the
flexural vibration mode of a cantilevered beam.

If the problem 1is restricted to the shell whose cross section is a

perfect circle, the displacements can be fixed to one circumferential wave

mode because of the orthogonality with respect to the circumferential mode.

Boundary Conditions of Shell-Liquid System

Internal 1liquid of the shell is assumed to be nonviscous, irrotational
and imcompressible. Based on the linear potential flow theory, the velocity
potential induced by free vibration of the circular cylindrical shell-liquid
system is obtained.

Representing the boundary value problem between the liquid and the shell
by the velocity potential ®; the following relations are given.

2 2 2
2 e, 1 9 13 )\ _
VeO(x,r,%,t) _(3X2+ 2392t 1oz + arg =0

(5)
.. Bl
i) -I%%(x,r,o,t) =?a%(x9r’ﬂst) =0 ii) 5;()(,0,3,1‘.) =0
iii) %’;—(O,r,s,t) =0 iv) ‘g%(h,r,é‘r,t) =0
o) . MN A . s
v) ;ﬁ(x:aasat) =W =(m§1w(mn)(x,‘3)ﬂ(mn)(t) + Z(t)cos (6.a-€)

The solution of these equations are given by (Ref. 7) and the internal
hydrodynamic pressures can be obtained from the linear Bernoulli equation.

Equation of Forced Vibration

The nonlinear equilibrium equations of motion of the system are obtained
from the Lagrange's equations which are given by

d IST ) 3S oF
(e + + = =N - P
dt\aﬂ(q,) an(qr) an(qr) far) [(qr) 1,2,0.4, (M'N ) ]

(7

where T and S are the kinematic and strain energy of the shell, respectively.
F is the dissipation function of the shell depending on the viscous
damping, N(q are the generalized forces produced by the liquid pressures and
equivalent damping forces of liquid and (+) shows the derivative with respect
to time.

The displacements of the shell, which is subjected to horizontal ground
motion Z(t), are represented as follows

U(x,%,t) = u(x,%,t)
V(x,%,t) = v(x,%,t) - Z(t)sind
W(x,%,t) = w(x,&,t) + Z(t)cosd (8.a-¢)
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The first term of the right hand side of the above equations are relative
displacements of the shell to the ground and expressed as Eqs.(3.a-c). These
displacements are used for the representation of the forces and energies in

Eq.(7).
NONLINEAR EQUATIONS OF MOTION AND THESE SOLUTIONS

For the system ignoring the nonlinear strains, the frequency equations
are derived from Eq.(7) and expressed as

[(K] - allMs] + [M.111{Q} = 0 (9)

where A =(1-12)p;dwY/E, w are, respectively, nondimensional and dimensional
natural frequency of the shell-liquid system, [Ms], [K] are the mass matrix
and stiffness matrix of the shell, [ML] is the added mass matrix of the shell-
liquid system which is obtained from the generalized force associated with the
elastic displacement w. Q! is an eigen vector and has (3xMxN) dimensions, in
which M, N are respectively the number of terms expanded in the circumferen-
tial and axial directions;

{Q } = [C11’C12,\' b 1C1N’C21, see,Copnyeee ;CM1, v oo, Cw,
Byy,Br2, * ¢ ¢ ,Bins Bary* oy Bany * 0 »Bms = B

T
V- STRY-CPPRR Ry UNPY.CIPR sBons *t s AM T 0t aAMN.I
(10)

Frequency Equation of Nonlinear System

Using the {(mn)-th eigen vector of Eq.(9) into the Eqgs.(4.a-c) and
substituting the above displacements and forces in Eq.(7), the governing
nonlinear equations of motion associated with (gr)-th generalized coordinate
are presented as follows.

M'N' T
' Wl . .
W%L{Qm)iwgmﬁwf M;){d }[”mm%t) + 2R(0)] + [MS” + M Jufyne (0)
qr

" it ot M],<(,m1m)(n()§n)2) Nmiot) (E)Mmang) ()

+ K o (mang) (man (t t t
(mﬁg (erglz)ﬂ (mg‘ssm (mini) (m2n2)(m3n3) T miay) )n(mZnZ)( )n(ﬂ"3ﬂ3)( )
+ [T+ 0™ i) = 0 (1)

1

where hdgnis the generalized mass of the elastic shell and A4T”is the gener-
alized added mass of impulsive pressure produced by the elastic displacement
of the shell. anand I are the generalized loads of effective inertia force
of the shell and the internal liquid, respectively, and Z(t) is ground
acceleration and «a is the viscous damping coefficient of the shell.

Using (mn)-th eigen vectors, the orthogonality between the fundamental
modes is represented as

(e U = a1 + w1}

A(mn)[M(fgn)_(_ M(rlm) ] (o = m'n')

=0 (mn ® m'n')

(12.a-b)
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Substituting the above relation into Eq.(11), Eq.(11) can be expressed as

2 M'N' M'N'
n(q,) + ;'3, wgzn(q,w*' w(qr) [(m%](mzznz)d (m1n1) (m2n2) M(mint) N (mazn2)

gmfm){mZHZ)(mSnii) Nimint) Nimzn2)Nmana) 1/ [ M § Mf.qr) 1 = -BgyZ(t)

o
(m1nff (m2n 1 (M3fd)a (13)

where [gy=0/Wgyis the damping ratio of the shell. fgyis the participation
factor of the (qr)-th mode and is given by ,

Bay = L T& + 18 1/ IMET + ME) (14)

Solve the Equation of Motion

The object of this paper is 'to investigate the coupling phenomena between
the modes of high order and a fundamental mode for the circumferential
direction. Then, we adopt two displacement modes corresponding to w; and wg ,
which almost correspond to sliding mode and cos3f mode, respectively. Note
that this number 1, 3 do not mean the m=1, 3, because the coupling between the
circumferential modes take place in linear free vibration modes due to
imperfect section.

The corresponding nonlinear equations of motion to wy ,ws are derived
from Eq.(13) as follows.

- s 2 2 2
Ay + 20,WyNy + WMy + 0Ty + QaMyyNigy + Qally

2 2 3 = - 7
+ GAH% + QgNyNar + QeNyNg T &7 Ny, Buz(t)
= 9 2 + 0gN, + OgNg Ny + Oy
Mg + ngwmnm + WaNay 8 T3y CRACTRN
3 2 . 2 3 = _R..7
+ OL“T]; + QMg My + QaNgMyy T+ Cadl BunZ(t)

(15.a-b)
For the case of the shell with perfect circular section, the integratioms

of the components Km%nmzﬂ), Km&mmmam3M) in Eq.(13) become zero identically if
the following relations among the indices of Eq.(13) are not satisfied.

ngx?m)(mana t |mt 2m2| =q
K{inimen2iman3) : |ml % m2| = |m3 % qf (16.a-b)
In this case, Eqs.(15.a-b) are reduced to the following equations.
iy + 2anﬂﬁn + w%nﬂ + u4n% + asnin31+ @sﬂnn; = -B”Z(t)

. ) 2 3 _
Mg + 20505 N3 + Wiy + Mgy + CalgyMyy + Ogy = ‘
‘ (17.a-b)

SOLUTIONS DERIVED FROM THE HARMONIC BALANCE METHOD

In order to obtain the stationary solutioms -of A Eqs.(15.a-b) and .Egs.
(17.a-b), we use the harmonic balance method.. Considering the higher harmonic
oscillations of two degrees of freedom,  the harmonic solutions in the form;
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2 2 .
Ny = CQcoswt + SQSlnwt + éJcosZwt + 5”51n2wt

D 2) 2) .
Ny = Cgcoswt + 3;31nwt + C&costh + 8&51n2wt (18.a-b)

If the solutions are restricted to the first harmonic oscillation, Eqs.(18,
a-b) expressed as

Ny, = Cpcoswt + Syysinwt

Ng; = Cycoswt + Sgsinwt (19.a-b)

The difference between the results obtained from Egs.(18.a-b) and (19.a-b)
are so small for the problems which show the a little nonlinearity.

Substituting Eqs.(19.a-b) into Egs.(15.a-b) and applying the harmonic
balance method, mnonlinear algebraic equations with respect to coefficients
(Cy15 Siys Cas S3y) are derived as follows.

(~w2Cq1 + 20Ty Sy + WHCi) + 064((311 + Cnsn) + @5(3Cuca1+ SfiCar + 2Cy;Sy;S3y)
+ %@5(3CHC; + CnS; ancmsm) + 067((331"' Cmsm) = -Byuf

2
(-w2Sy - 204w Cqy + WASy) + Zoc4(C11S11 + in) + Zocs(zc”s”ca, + C2Sar + 3S5Sa)
2 3
+ %Gs(zcncmsm + SHC; + 385:4Sy) + ‘@7(C;Sm + S3) =0

(-(.UZC31 2(.031U~)C31831 + U.) C31) + Ot”(C31 + 031831) + O£12(3C11C31 + C11531 + 2811C31831)
1
+ Zam(3cncm + Sﬂcm + 2Cy;54S31) + uM(C” + C”S”) = -f4f

(-w?Sqy - 2w31w;31c31 + Wi Sy) + oaﬂ«:ms31 + 531) + aam( 2CCaiSay + SCa1 + 3511Sa1)

+ &w(zcnsncm + ChHSg + 3Sn5m) + aM(CnS” +8h) =0 (20.a-d)

When - the cross section of the shell is a perfect circle, the nonlinear
coefficients a; and ay; are equal to zero in Egs.(20.a-d).

NUMERICAL RESULTS

To show the effectiveness of this procedure, the response functions of
shell-liquid system are presented for a model.

The model for a numerical example has the parametric values as shown in
Table 1. The radius of the shell with imperfect circular section 1is
a(#)=1828-101.56c0s20(cm). ,

In Table 2 through Table &, natural frequencies, participation factors
and nonlinear coefficients of shell-liquid system are shown, respectively.

Fig.2,3 show the frequency response curves of the maximum displacement
w for an empty shell and a shell containing liquid (h=0.3 £ ), respectively.
They are calculated for the amplitude of excitation £=0.3(gal) and ¢y =3 =
0.03. In Fig.3, because of 73 are excited at the frequency region W/wy¥l,
and the amplitude of 7 is about 1.5 times larger than that for an empty
shell, it is presumed that the coupling phenomenon between the circumferential
wave modes corresponding to 7y, , 5 are excited at the frequency region near
to W/wy $1 by the nonlinearity due to including liquid. In these figures,
M3 are also excited at the frequency region Wsr /wy , it is presumed that the
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effects of imperfectness of the circular section, but the effects for the
response of first uncoupled circumferential mode 7,, are a little.

CONCLUSIONS

A procedure considering the imperfectness of the circular section for
nonlinear frequency response analysis of the shell-liquid system has been
presented.

Numerical results show that the coupling phenomena of circumferential
wave modes of a high order have been excited by the effects of intermal liquid
but the imperfectness of the circular section has not been played an important
role.
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TX(u) Table 2 NATURAL FREQUENCIES (Hz)

h=0 h=0.34
’——'“l‘fg;* | " IMPERFECT | PERFECT | IMPERFECT | PERFECT
C 1 35.36 3671 23.60(" 23.37
3l 17.12 17.13 15.71 15.71
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Table 3 PARTICIPATION FACTORS

|
L_ , 7=0 7=0.34
a B M T TYPERFECT | PERFECT | IMPERFECT | PERFECT

1] -3007.29 ] -3012.05] -3396.31| -4626.65
s 68.56 0.0 193.23 0.0
Table 4 NONLINEAR COEFFICIENTS
h=0 h=0.30
o IMPERFECT PERFECT IMPERFECT PERFECT
o 0.986x10-" | 0.0 20.225%10-1 | 0.0
. ! a2 0.825x10"° | 0.0 -0.543x10"" 0.0
Fig.1 SHELL MODEL -2 -1
: _ as 0.176x10 0.0 -0.186x10 0.0
, o 0.951x10° 0.750x10° 0.878x10" 0.587x10"
Table 1 NUMERICAL EXAMPLE g 0.942x10° 0.606x10° 0.228x10° 0.762x10"
aolem) 11828 s 0.109x10° 0.988x10° 0.224x10° 0.201x10°
L Cem) 1219. @ 0.360x10" 0.0 0.783x10" 0.0
hs(em) 2.339 oe -0.153x10"" 0.0 0.180x107* 0.0
3
os(kg/em™) | 0.008 os 0.353x107% | 0.0 -0.373x107' | 0.0
b (em) 365.7 arol  0.412x107% | 0.0 -0.272x107' | 0.0
. 3
o (kg/em®)|  0.001 aryl  0.341x10° 0.341x10° 0.182x10° 0.182x10°
-101.
22 (em) 101.36 \ a2  0.108x10° 0.0 0.235x10° 0.0
E 2 .1
(kg/em®) 2.1x10 o1s]  0.109x10° 0.988x10° 0.224x10° 0.201x10°
v 0.
v 3 Qg 0.314x10° 0.202x10° 0.761x10" 0.254x10"
- x107%
x10 20
5 : -—— 3:1828 -101.56¢c0s28
<---2+1828
— 3=1828 -101.56c0s26 -
ema=1 |
2=1828 . . ] 18
w
10t cm)
w
cm 10r
o8-
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e e
0 A A %n 0 reere i LI | o
0 02 04 08 o510 Ca 00 02 04 06 08 10 12 T4 515 30"
Fig.2 FREQU i
8 QUENCY RESPONSES (h=0) Fig.3 FREQUENCY RESPONSES (h=0.3%)
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