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SUMMARY

The influence of soil flexibility on dynamic behavior of a slab-
supported cylindrical liquid storage tank is investigated. Solutions from
both the frequency-dependent as well as the frequency-independent stand-
points are obtained. It is concluded that if the base excitation frequency
is small compared to the first natural frequency of the rigid-based system
the soil-structure interaction is significant.

BACKGROUND

The problem of response of slab-supported liquid storage containers
subject to seismic excitation has been of concern for many years. In 1957
G.W. Housner, (Ref. 1), studied the hydrodynamic pressures developed when
such tanks are subjected to ground motions and presented results in the form
of equivalent masses together with their locations for representing force
and moment effects on the rigid tank due to liquid motion. A more recent
treatment was offered by A.S. Veletsos and J.Y. Yang, (Ref. 2). 1In 1978
T. Balendra and W.A. Nash, (Ref. 3), presented a finite element analysis of
an elastic domed cylindrical liquid storage tank subject to base excitation.
Comprehensive shake-table tests of broad cylindrical liquid storage tanks
were carried out by D.P. Clough, (Ref. 4), in 1977 and additional tests of
tall, narrow tanks were reported by A. Niwa, (Ref. 5), in 1978. 1In 1980
M.A. Haroun, (Ref. 6), carried out forced vibration tests on three full-
scale water storage tanks to determine their dynamic characteristics. More
recently Y. Goto and T:. Shirasuna, (Ref. 7), studied the dynamics of
cylindrical tanks completely embedded in relatively soft ground. None of
the above investigatios of slab-supported tanks have considered soil-
structure interaction effects. Thepurpose of the present work is to con-
sider this effect.

ANALYSIS

Let us consider the vertical cylindrical storage tank shown in Figure
la. The tank is assumed to consist of N ring-like elements with the mass
of each ring being concentrated as its geometric center as shown in Figure
1d. Further, let u, be the ground acceleration; hj be i-th nodal point's
height; m; be the mass of the i-th nodal point; x; be the displacement of
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the i-th point relative to the base; Ij be the mass moment of inertia of
the i-th element about its axis of rotatlon, Xp be the base translation
relative to the ground motion; my be the mass of the footing; ¢ be the base
rotation; uj = ug + Xg + ¢hj + x; be the total displacement of the i-th
nodal point; [M], [C], [K] be the mass, damping, and stiffness matrices
respectively for the system when it is resting on a rigid foundation; and
H(t), M(t) be the interaction effects between the base and the structure
relating shear force and moment respectively.

The equations of motion for dynamic equilibrium of the N nodal points

are:
"

)
M] u; + [c] x; + [K] %4 = o (1a)
where i =1, 2, .. N

The equation of motion of the structure-foundation system as a whole,
in tranmslation, 1is:

n "

(myu, + myuy +ook mu) + mo({{g +xy) + H(E) = 0. (1b)

A comparable equation may be written for rotatiom; this involves the I
These equations are then cast into matrix form.

With the assumption of a massless disk on the elastic half-space the
interaction forces can be expressed as:

#©) [0 0] [xy(6) &, &5 [x @) [, KT [x0
= + +
" b3 % ' kS *
M@ o o] {8 (® ©1 S2| (@) [F21¥22| b @

This leads to the following general equations of motion including soil-
structure interaction effects:

M x+ QX+ R x=-Fu 3)

where, for example [M] is a matrlx having in its elements [M], the hj

the m; and the Ij. Thus, [M], [C], [ﬁ] are the mass, damping, and Stlff—
ness matrices respectively of the soil-structure system, X and F are the
displacement and load vectors of the same system, and the c's and k's are
the impedance coefficients of the foundation medium. These coefficients
actually depend upon Poisson's ratio, the shear modulus, and the mass
density of the half-space. Also, they are usually frequency-dependent.
Approximate frequency-independent values of the c¢'s and k's have been sug-
gested by several authors. In the present work we investigate behavior of
the system in (a) the frequency dependent domain, and (b) the frequency in-
dependent domain. In (a) modal analysis is not applicable since the system
does not possess classical normal modes. Even in (b) the damping matrix
cannot be diagonalized under the same transformation that diagonalizes both
the mass and the stiffness matrices. Many approximate methods have been
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advanced to counter these difficulties.

To determine H(t) and M(t) in the frequency dependent domain the
elastic half-space is subjected to steéady-state harmonic motion. Equation
(2) then yields the H(t) and M(T) as functions of base translation and
rotation due to steady state harmonic motion as well as impedance functions
involving the dimensionless frequency, together with the translational
and rotational stiffness associated with the base slab. These impedance
functions are to be found in the work of A.X. Chopra and J.A. Gutierrez,
(Ref. 8). In the frequency dependent domain these were evaluated by
A.S. Veletsos and Y.T. Wei, (Ref. 9) for a wide range of parameters.

Thus, in this domain, for a ground acceleration Ug (t) = UelWt any response
variable may be expressed in the form x(t) = g(w)elwt etc. This leads to

AlX=-Fu )

where [A] = {EK(w)] - w?[M] + iw [C(w)i]; §_= F as in Eq. (3); (5)

x(w)

Xo(w) 5 U is the peak value of the ground acceleration.

. (j(w)

| s
1

- To determine H(t) and M(T) in the frequency-independent domain we
employ approximations to obtain

\J —
H(t) cy 0 Xy k 0 X

= + (6)

M(t) o %p ) o | |g

where the k; and cqi are functions of the radius of the base slab, the
elastic parameters of the foundation, and the total mass moment of inertia
of the structure plus base slab about the rocking axis at the base. As
has been suggested by the results of previous authors, the off-diagonal
terms have a negligible effect on the dynamics of the system and are thus
neglected. Thus, in the frequency-independent domain the equations of
motion may be put in the form:

i x+ (81 x+ (K] x = -_F_I';g %)

If the system has N degrees of freedom, Eqs. (4) and (7) represent (N+2)
simulataneous equations. The two extra unknowns are the base tramslation
and base rotation. :
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In the frequency dependent domain, a solution of (4), in the absence of
damping, was obtained directly through a matrix inversion method for the
case of steady-state base excitation. Once the frequency response func-
tion X(w) is known, the response to arbitrary base excitation can be
determined through use of Fourier transform methods together with the Fast
Fourier Transform.

In the frequency-independent domain, neglecting damping, a solution
of (7) for the steady~-state case is readily found and matrix inversion
can be avoided if the modal matrix [Q] of the system is available. For
arbitrary ground motion the solution can be obtained by using Duhamel's
integral.

An approximation to the stiffness matrix can be obtained by consider-
ing the cylindrical tank as a cantilever beam of constant rigidity and
having N nodal points. First, the flexibility matrix is obtained by use
of virtual work, and its elements fij are found to be

_ 3
£, = (1/3ED)h]
= 3 1, 2 —
£,5 = (1/38Dh] + (/2B (hy-h,) (8)
£..=£..
it Tij

where 1 = 1, 2, .., N; j =141, i+l, i+2, .., N ; E is the modulus of
elasticity of the cantilever beam; I is the bending moment of inertia of
the cantilever beam; and N is the total number of the nodal points. If
R2 and Rl denote the outer and inmer radii of the cylinder respectively,
I= (F/4)(R24~R14). The stiffness matrix may now be determined by taking
the inverse.

For the mass matrix, the mass of the i-th element is m, = ROl(Vi)
where V, = Tr(R22 —R12)Hl, RO1 is the mass density of the tafnk material,
Hl = HH/N and HH is the total height of the cantilever beam.

For a liquid filled tank, the stiffness matrix is identical to that
described above for the empty tank. For the mass matrix, we employ the
concept of lumped masses, (Ref. 1). Figure 1 indicates the approach
wherein the dynamic forces exerted by the fluid are represented by a
fixed mass M moving with the tank walls together with an equivalent
simple oscillator of mass M having the same period as the first mode of
the fluid. This equivalent system is considered to exert the same hori-
zontal force and overturning moment on the tank walls as does the original

system. Using the values of the ki from (Ref. 9) and introducing the
additional variables.

"
kg = zcklk4 + kykgke) and ke = Sa/ug max (€))
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where S_ represents an acceleration spectrum corresponding to the period
T, we have the maximum overturning moment Mb

1"
Mb = 3 ks Mh ug max (10)

where M is the total liquid mass and his liquid depth.

Let us consider a mass (Myg) such that its centroid will coincide
with thﬁ liquid centroid and it will produce the same overturning moment
due to ug max. Thus,

" = 1 " =
Mad ug max (h/2) E kS M h ug max k5 M (11)

Thus,; k. determines the percent of the total liquid mass to be employed
in the analysis so that instead of using the model in Figure 1b the model
shown in Figure lc can be used as long as the additional mass M_, from
(11) is used. If n denotes the total number of ring-shaped elements
below the liquid surface the additional mass for one such element will be

m . = Ma /n. For those elements above the liquid level the mass is the
same as gor the empty tank discussed earlier, but for those below the
surface the mass is m,,_ = m, + m_,.
it i ad
EXAMPLE

Let us consider a circular cylindrical tank with an inner radius of
2.995 inches, an outer radius of 3.005 inches, a height of 12.0 inches, a
mass_density of 0.733 10731b-sec2/in®, and an elastic modulus of 29.0
x 1061b/in2. The base disk to which the tank is attached has a radius of
5.00 inches, a thickness of 1.00 inch, and a mass density of 0.21x10~31b-
sec2/in%4. The soil medium on which the base disk rests has a mass density
of 0.18x10731b-sec?/in%, a shear modulus of 50,000.001b/in?, and a Poisson's
ratio of 0.3. The base of the tank is subjected to steady-state harmonic
excitation represented by u_ = 1.0 cos wt where w is determined through
use of the foundation stifffiless coefficients given in (Ref. 9). Next,
the interaction parameters are determined for a number of base frequen-
cies and, for example, for w = 10, we found k5 = 1.237 and 'k, = 1.758 for
the case of the above tank being half-filled with water. The kg value
was determined from the acceleration spectrum of the 1940 El1 Centro and
the period of liquid oscillation T; from (Ref.l). The radial displace-
ment at the top of a half-filled tank at the end of a diameter in the
direction of the ground motion is shown in Figures 2 and 3. Figure 2
indicates the displacement in terms of dimensionless frequency of excita-
tation as determined by computation in the rigid base case and also with
consideration of soil structure interaction in the frequency dependent
situation. TFigure 3 indicates the response as determined through use of
frequency independent analysis. Additional plots for other response
variables are shown in (Ref, 10).
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CONCLUSIONS

For the tank considered here, if the ratio of the base excitation
frequency w to the first natural frequency of the rigid-based structure
w, is greater than approximately 2.5 the effects of soil-structure inter-
action on deformations are not significant. If, however, this ratio is
less than about 2.5 the interaction effect is quite significant particular-
ly when w is close to one of the natural frequencies of the soil-structure
system. Use of the frequency independent domain concept leads to an
estimate of dynamic behavior but in general frequency dependence must be
employed to obtain more precise engineering results.
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