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SUMMARY

Based on potential flow theory for incompressible, inviscid fluid flow
in conjunction with the response spectrum approach, the maximum pressure
distribution in the deformable liquid filled cylindrical tank is calculated.
The coupled fluid-structure-interaction problem is solved in a semi-
analytical manner. By applying this maximum pressure distribution to the
shell incrementally the loss of stability (mainly caused by axial compres-
sive membran forces near the base) is considered by a non-linear finite
element analysis. Particularly the influence of shape imperfections on the
stability is investigated in the non-linear numerical calculation.

INTRODUCTION

Elastic buckling of the shell at the base (shell crippling) is -
beside of other phenomena as elephant footing, cracking, overturning ... -
one of the possible damage mechanisms of cylindrical liquid storage tanks
under earthquake excitation. The shell crippling during earthquake may be
considered as a local instability due to concentrated axial membrane forces
in the base area of the circular shell, caused by the overturning moment
resulting from the dynamically activated fluid pressure.

Let us consider cylindrical shells filled with liquid, fixed at the
bottom and free at the top. The height of the shell is L, the height of
the liquid is H (H<L) and R denotes the radius of the circular shell. The
earthquake is characterized by its response spectra and the corresponding
maximum ground acceleration A, whereby only unidirectional horizontal
excitation of a rigid base is taken into account in this paper.

INTERACTION OF THE SHELL AND THE LIQUID

There are many papers dealing with the interaction of the tank wall
and the liquid filling. The earlier ones are treating the shell to be
rigid (Ref. 1). But it could be shown that the deformability of the tank
may have a tremendous influence on the distribution of the dynamically
activated pressure (Ref. 2) and, hence, on the stability of the shell.

By applying the response spectrum method (Ref. 3, p. 389 ff.) the
maximum pressure distribution relevant for the buckling analysis can be
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estimated with high accuracy. This approach requires the knowledge of the

free vibration modes of the complete interacting system: shell and liquid.

Let us consider a cylindrical shell which at the time t experiences a
horizontal bottom displacement, up(t), at the axial coordinate x=0 in the
angular direction ¥=0. The common displacement may be split into a parallel
dlsplacement of the shell and in vibrations with the relative displace-
ments - in relation to the basecircle - w(x,$,t), v(x,¥,t). w stands for
the relative radial displacement, v for the relative tangential displace-
ment. w in the following means the circular frequency according to the
first eigenmode. Here we have to take into account that during horizontal
ground acceleration in perfect circular cylindrical shells only eigen-
modes with the circumferential wave number m=l are being activated (Ref. 4).
Some recent experimental investigations (Refs. 5, 6) show, however, that
in real tanks due to unavoidable imperfections also eigenmodes with m>1
contribute to the coupled fluid-shell-motion. This fact is of significant
importance especially in the treatment of vibrations of concentric shells
with rather narrow liquid columns inbetween them (Ref. 6). For the sake of
simplicity this paper only deals with the first of the eigenmodes with
m=1l, a procedure which seems justified for many practlcal applications.
(The action of higher eigenmodes with m=1 is negligible in many cases; on
the other hand, for the higher eigenmodes we can proceed in an analogous
way and superimpose in accordance with the superposition rule.)

As shown in Ref. 7 the viscosity and compressibility effects are
negligible with respect to the stability of the shell. Thus the potential
flow theory is applicable in conjunction with time dependent boundary
conditions due to the vibration of the tank wall; see Ref. 2. Since the
response spectrum method is applied only to free vibrations, natural
frequencies and corresponding mode shapes of the liquid filled shell need
to be calculated. Hence the time dependence is harmonic and the problem
leads to usual eigenvalue calculations.

The dynamically activated pressure distribution can be divided into
three parts:

- the convective fluid pressure, pbc, due to surface sloshing,

- the impulsive fluid pressure contribution, ppi, attributed to the
parallel displacement of the fluid column, up(t), i.e. the rigid body
motion of the tank wall,

- a further impulsive fluid pressure contribution, pgq, activated by the
relative motion of the tank wall, i.e. the wall deformation, with res-—
pect to the rigid base circle.

The convective fluid pressure, pp., (sloshing)

For sloshing, the tank can be treated as if r1g1d The calculation
of the sloshing period, T , is demonstrated e.g. in Ref. 8 as follows

" R 2 . )
T = 2n( 7 £ =@ 1= L2
n; e tankl(nj 7 b

nj is the j-th zero of the derivative of the Bessel function J1 of the
first kind (n,=1.841 5.331, n,=8.536,...). g being the acceleration
of gravity. T%e negllglgle influence of the deformability of the shell is
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shown in Ref. 9.
A%, the spectral acceleration value to the frequency, f?, can be
taken %rom a response spectrum for a maximum base acceleration, A, and a
small modal damping value (7<0.5%). The extreme distribution of the con-
vective fluid pressure, ppc:, corresponding to the j—th sloshing mode,
can be taken from Ref. 8 an% is as follows

H
. 9 cosh(%ig)

Pbcj = Rop, 4, ng T oot (0.5 cos P
iR
- % . =§
= Ro, Pbcj(E)cos(PAj, i=1,2,3 ..., &g

p, 1s the mass density of the liquid. The actual extreme fluid pressure,
p, ., results from a superposition. In most cases only the first sloshing
mode is essential.

The rigid tank-impulsive pressure, pp;

As shown in Ref. 8 the contribution to the extreme impulsive pressure
distribution attributed to the "rigid" tank motion can be calculated by

i1
= AHp ; 8 -£:1) ’ Il(l.) coé('ﬂg) cos? i=1,2,3
pbi L J=l;'2' jZIvl()\j) Jz 1=i,4,5 ...
= AHpL Pbi( Ecos'p
. _ .mR
with Aj = Iog

The impulsive pressure due to shell deformation, pg

The principal idea of the procedure outlined in Refs. 2,7,8 is to assume
the mode shape of the tank wall vibratioms, f(x), as to be known or
approximated in advance. Hence the radial displacement for the considered
first mode with m=1 is given by

wiz,,t) = C£(x)cosPsinut.

With max |[£(x)|=l the factor C represents the maximum relative displacement
amplitude which can be calculated from
_ . (a=4)

C=y—r
Y is the mode participation factor. The spectral acceleration a related to
the frequency w may be taken from the response spectrum with a proper
damping value f discussed in the following chapter. The fréquency
results from the following procedure using the added mass approach as out-
lined in detail in Ref. 8.

217



The application of the potential flow theory leads to

® 211(1.)

Rp % 7
L j=1xj1 10

1
by > (J & Bcos (j5E)dD)cod jpDcos P

- _ .TR . ”
= RpL Pd(g)cos(ﬂ )\j = JZH, ] 1,3,5 ey f(X) - f(&)

which, multiplied by y(a-A) leads to the maximum pressure distribution
due to the presumed shell wall deformation Cf(x)cosY.
Since the corresponding resultant pressure force per unit heightis

(&) = Cw?p p,(OR?
the added mass per unitheight can be expressed by
w' (8 = r(8)/(CGEH D) = (®R21/E(E)

or the added mass density by
0'(®) = m'(£)/(2RT(E)) = p p (DIR/2E(E)R(E)

with h( &) being the thickness of the tank wall dependent on the axial
distance from the bottom.
With the effective mass density

PLPq

p%(g) = ps+p'(5) (ps... mass density of the tank wall)

a 'lry'"shell can act as an approximative substitute of the liquid filled
shell as long as vibrations with an eigenmode approximated by F(£&) are
considered. Neglecting the follower force effects of the liquid pressure
and the influence of the prestress of the tank wall due to pressure
loading the solution of the eigenvalue problem of free vibrations of this
dry shell substitute (usually using numerical methods as e.g. Ref. &)
renders the fundamental frequency w and a corresponding mode shape (&)
which in general is not indentical with £(®. $(&) may be used as an
improved approximation of the first mode shape of the liquid filled tank.
This procedure leads to the following iteration scheme:

-~ go ) 1 = ]-a.
i=l  assume:f (&) *07(8) % w ,£.(0) Hg‘fi(g)dg/g fi(E)dE]—1|<6 ?

A
\ -~ = S
A ' no yes
i 1+14~fi+1( Qéfi(E) m R
w,£(8),v,a
As shown in Ref. 8 the mode participation factor may be calculated from
1p4(8)
A
y = 0 0D
1£(8)

1
whereby Pq is neglected as against p ; i.e. ps'« p' and p¥x p'.
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The resultant maximum pressure distribution

In addition to the axisymmetric static pressure distribution the
individual compoments of the dynamically activated pressure can be super-—
imposed by application of a proper superposition rule as for example the
SRSS method, Ref. 3:

p(EY) = OLg(H-E)+P( E)cosf

with L _ - , 1
= w 12 _ _—

P(®) RPL {§lAijc(€)l + [y(a-A)R () + agP, . (D)]2)2

For the example treated in Ref. 8 the individual components and the resul-
tant dynamically activated maximum pressure distribution is shown in
Fig. 1.

[lengthl =cm 10
5 ~._
| . R r -
3 8
T 016 N
= measured
peak value
I p, = 10°NsYem* 6
-5
N Py =27%10° /
~ O
R ® A _Pbc d i Fy
i 2 02286 "1 (0.86 Hz) /
| ! m 2286 ) /
i E=686x10°N/cm® ’
i v=023 2 ,/
1.1 I /
o ez L

0 2 4 6 PNem10
Fig. 1 Calculated resultant maximum dynamic wall pressure

DAMPING OF THE VIBRATION OF THE LIQUID FILLED TANK

There exists only few literature about the damping of the liquid
motion in a tank and of the common vibration tank/liquid. Gemerally it
is found that damping both due to friction of the liquid on the wall and
the bottom and due to internal friction is very small. Some analytical
estimations are given in Ref. 7 and lead to damping ratios £<0.5%. The
authors recommend 0% for analysis.

The damping behaviour of the common vibration tank/liquid was in—
vestigated experimentally in the last years. Specifically the experimental
results of Kernforschungszentrum Karlsruhe, Refs. 10 and 11, shall be
mentioned. It was found that the damping ratios Cempt and Ceull do not
differ significantly. This fact agrees well with the %indings reported in
Ref. 12 and experiments performed by the authors of this paper, see Ref.13.
It leads to the conclusion that beside other damping mechanisms as friction
at the clamping the shell is damped hysteretically. In this case the modal
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damping ratio ¢ does not depend on the specific mass U of the system. In
the case of viscous damping £ is proportional to u—llz and this would
decrease ¢ significantly for a liquid filled shell due to the apparent
specific mass of the liquid. The authors therefore recommend for earth-
quake analysis g values for "dry'" structures as given in Ref. 14, p. 102.

STABILITY OF THE EARTHQUAKE LOADED TANK

As shown in Ref. 15, for the current type of tanks the influence of
the shell mass forces can be neglected when calculating the stresses
activated by the fluid pressure in the cylindrical shell and analysing the
stability of the shell, i.e. the stress- and stability-analysis can - as
an approximation - be performed for a quasi-static system. The quasi-
static stability approach may be justified by the fact that the frequency
of the time dependent pressure loading is considerably lower than the fun-
damental natural frequency of the empty shell. Furthermore the buckling
mode is completely different from the vibration mode due to earthquake ex-—
citation. Also very recent buckling experiments published in Ref. 6 justify
the static approach. Hence,we are considering a cylindrical shell fixed at
the base, free at the top, under a static load, p(&,). For a stability
analysis of the shell in the classical sense we need the membrane forces
Ng, T, Ng,. According to the membrane theory of perfect circular cylindri-
cal shells, Ref. 9, we get for a pressure distribution:

np( £4) = R(E(E)cosy + Hp g(1-8))
In Ref. 8 it is shown that the axial membrane force is given by

21 ~ -~ ~
() = —%gf P(8) (&6)dgosy

The mathematical justification for calculating the membrane forces only by
the membrane theory is also given in Ref. 8.

According to the concept of several design standards, as for example
Refs. 16 - 18, the safety factor regarding stability limit is calculated
by comparing the classical critical axial membrane stress of a perfect
circular cylindrical shell under a uniformly distributed axial load,Ref.19:

Ger - mern = L Fh

A s
with the maximum value of the axial membrane compressive-stress n_(0,0)/h.
In order to take account for imperfections a "knockdown' factor, &, is
applied and the safety factor, s, is estimated by
-cr
- X

sTa nXEO,OS
with a=0.2 + 0.4.

Experimental investigations, as for example shown in Refs. 20, 21,
lead to the conclusion that this procedure represents a conservative esti—
mation even if no "knockdown" is used to account for imperfectionms. Also
from these experiments it can be concluded that the imperfection is

balanced by the nonuniformity effect as discussed at the end of this
chapter.
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In Ref. 8 the authors describe a nonlinear finite element stability
analysis of the modal tank shown in Fig. 1. The results of this analysis
realize the above mentioned experimentally obtained results:

The endurable maximum axial membrane stress is considerably higher
than the classical buckling stress:

Eir = 8028 N/cm? (s = 3.24) classical, perfect shell
G;r = 11315 N/cm?(8 = 3.725) nonlinear FE, perfect shell
éir = 11062 N/cmz(z = 3.922) nonlinear FE, imperfect shell

with imperfections leading to
R(E,P) = R|1+e(a, &ra, E2+a g% cosn?
(e=4.23x1073, a,=2.275, a,=0.875, a,

The safety factor s can be interpreted as being the number by which the
maximum ground acceleration of the earthquake under consideration, A,
must be amplified in order to cause shell crippling.

Based upon experiments at the EERC in Ref. 21 it is outlined that the
compressive axial membrane stresses causing buckling of earthquake loaded
liquid filled cylindrical shells must be more than 2.35 times larger than
the maximum allowable values specified by the American Petroleum Institute
(Ref. 18). This observation agrees with the above mentioned fact of
endurable maximum compressive membrane stresses considerably higher than
the usual buckling formulas would predict.

The knockdown factor, a, in the standards is based on static buckling
tests of small cylinders under uniform axial compression. The axial com-—
pressive stress of the earthquake loaded shell is, however, concentrated
rather locally in the area of small values of ¥ and &. Hence, a certain
stiffening effect may be contributed by the surrounding shell. In addition
to this the over-all imperfections are less relevant than the local imper-
fections near the base which are usually smaller than in the remaining
cylinder. Furthermore the axisymmetrical static fluid pressure, p_, leads
(except a very narrow area at the base) to circumferential tensilé stres-
ses which give a certain stabilizing effect. These facts are the reason
why the standards are rather conservative in case of earthquake loading.

Considerations of the differences between the numerical results of
the perfect and the imperfect ghell, i.e. (0%, s) - (0T, s), shows that
the critical buckling stress, oC€T, of the imperfect shell is smaller than
the one of the perfect shell, g°T. This conforms with the general assump-
tion. However, the safety factor of the imperfect shell, s, is higher than
that of the perfect shell, §. This surprising result has its reason in the
circumferential distribution of the axial compressive stress. The imperfec-
tions described above decrease the peak value of the axial compressive
force in the buckling area (see Fig. 2). Of course, a sin(n¥)-circumferen—
tial imperfection distribution — which should be used for security reasons -
leads to a decrease of the critical amplification factor, S. This imper-
fection distribution is now studied by nonlinear finite element calcula-
tions.

A further result of the nonlinear finite element stability analysis
is the buckling mode shown in Fig. 3 which reveals the local nature of the
buckling as can be observed on tanks failed by buckling due to earthquake,
see for example Ref. 22.

=-3.15, n=4).
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Fig. 2 Circumferential distribution of the axial nenbrane
force at the base circle just befors buckling
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CONCLUSIONS

A rvather simple approach is shown how to calculate the msximum pressure
distribution on the tank wall during earthquake. A further development
should include the conrriburions artributed to the vibration modes with
w>l, i.e. more than one circumferential waves. The damping value of chg
liquid filled tank, which is essential in the response spectrum analysis,
can be chosen as being the same a8 the damping ratio of the empty tank.
The application of the current deaign atandards based on knockdown factors
a<1.0 for calculating the critical buckling stress or the safety factor far
buckling due to earthquake represents a very tonservative approach as long
shell crippling (i.a. local elastic buckling) is concerned. Calculations
and experiments show that the maximum compressive axial membrane stress
leading to shell crippling is higher thaan the classical bifurcation prea~
sure even if imperfect shells are considered. Finally, the quasi-static
stability approach is applicuble, dynumic stability analysis need not to
be applied for buckling of earthquake loaded liquid etorage tanks.
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