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SUMMARY

This paper discusses the results of a series of static and dynamic
analyses of cable-stayed bridge structures. It is shown that, if a nonlinear
analysis is used to obtain the structure stiffness in the dead load deformed
position, a linear static or dynamic analysis may be used for normal design
loads. This indicates that linear dynamic analysis procedures, such as the
Response Spectrum Method, are applicable to this type of structure.

INTRODUCTION

In a cable-stayed bridge, the roadway is supported elastically at
specific points by inclined cable stays which are attached directly to tall
towers. One of the main differences encountered in the analysis of a cable-
stayed bridge, compared to more conventional structures such as continuous
girder bridges or rectangular framed buildings, is the possiblility of
significant nonlinear behavior. Most design engineers lack experience with
nonlinear systems, therefore, they might be hesitant to undertake the design
of a structure of this type. In order to compensate for this inexperience and
to facilitate the expanded use of cable-stayed bridges by designers,
information must be made available concerning their behavior under various
types of design loads.

NONLINEAR STATIC ANALYSIS

Under normal design loads, the material in a cable-stayed bridge can be
considered to remain elastic, however, the overall load-deformation
relationship can still be nonlinear. Three primary sources of nonlinear

behavior have been proposed by previous investigators. These are: the
nonlinear axial force-elongation relationship for the inclined cable stays;
the interaction of the bending deformations and high axial forces in the
towers and longitudinal deck members; and the geometry changes caused by the
large displacements which can occur in this type of structure under normal
design loads.

In order to investigate the importance of each of these possible sources

of nonlinear behavior, a number of static analyses were performed, at the
University of Pittsburgh, on mathematical models which represented several
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different actual or proposed bridges. The analyses were performed by the
Stiffness Method using a combined incremental and iterative approach, in which
the stiffness of the structure was recomputed after each load increment was
applied. Iterations were continued until the unbalanced joint loads were
within an acceptable limit. A general three dimensional static analysis
computer program has been developed which uses this approach. The program is
written in FORTRAN and is presently running on the University of Pittsburgh
DEC PDP-10 Computer System.

Due to lack of space, it will not be possible to present the results of
all of the various static analyses which have been performed, however, the
overall results were similar for each different mathematical model which was
considered. As a typical example, selected results for the mathematical model
shown in Figure 1 will be discussed. This particular mathematical model has
the cables situated in two planes and has structural properties similar to the
Luling Bridge in Louisiana.

Figure 1 - Mathematical Model

The effect of the change in geometry, as the structure deformed under the
applied loads, was incorporated in the analysis by revising the geometry of
the mathematical model after each load increment was applied. The structural
stiffness was then recomputed using the revised geometry. The structure was
considered to be subjected to a uniform deck load and a set of initial cable
tensions. A wide range of initial cable tensions and deck loads were
investigated. The results of these analyses, and similar results for other
quantities such as deflection of the towers or the moments in the deck, show
that the effect of the change in geometry of the structure is small, for
normal design loads, and can be neglected without significantly affecting the
computed behavior of the structure (Ref. 1).

The effects of the interaction of the bending deformations and high axial
forces, in the deck and tower members, were incorporated in the analysis by
introducing stability functions as multipliers to modify the terms in the
individual member stiffness matrices (Ref. 2). The stability functions were
recomputed at the beginning of each load increment to correspond to the actual
axial forces and bending moments in the members. For all cases considered,
over a wide range of conditions, the computed stability functions varied by
less than three percent from a value of 1.0, and for most cases the variation
was less than one percent (Ref. 3). Since the stability functions are used as
multipliers, a value of 1.0 corresponds to no change in the structure
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stiffness. Therefore, it can be concluded that, eventhough the longitudinal
deck members and towers are subjected simultaneously to high axial forces and
bending moments, the effect of the interaction of these quantities upon the
overall stiffness of the structure is small.

The final nonlinear effect to be considered is the overall change in the
stiffness of the structure due to the variation of the axial stiffness of the
cables as the tensions in the cables change under the applied load. The
change in the cable stiffness was incorporated in the analysis by using an
equivalent cable modulus of elasticity, which combines the effect of both the
deformation resulting from material strain and the deformation resulting from
the change in sag in the cables, as suggested by Ernst (Ref. 4). By using the
equivalent modulus, the cables can be treated as normal tension members. The
change in the structure stiffness, due to the nonlinearity in the cables, can
be considered by recomputing the equivalent modulus for each cable to

correspond to the temsion in the cable at the beginning of each load
increment.

Figure 2 shows the variation of the normalized vertical deflection at
center span with the uniform deck load for the mathematical model shown in
Figure 1. The individual curves correspond to different values of the initial
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cable tensions, ranging from 0.25 to 2.0 times the full design values for each
cable. These curves show that the load-displacement relationship is nonlinear
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for low values of the uniform deck load, however, as the load is increased,
the relationship becomes more linear. For loads equal to the full dead load
or greater, the relationship is essentially linear for all initial cable
tensions considered.

The results of these static analyses lead to the conclusion that a cable
stayed bridge structure does behave in a nonlinear manner for low loads,
however, after the full dead load deformed position has been reached, the
structure can be considered to behave linearly. Therefore, the stiffness of
the structure, which is represented by the slope of the curves shown in
Figure 2, can be considered to be constant during the application of the live
load. This indicates that linear static analysis techniques are applicable to
this type of structure, starting at the dead load deformed positionm.

NONLINEAR DYNAMIC AIALYSIS

Many of the cable-stayed bridges which have been constructed, or are
presently in the design or proposal stage, are in active seismic regions.
This introduces some serious problems to the designer, since very little

information is available in the engineering literature concerning the response
of cable-stayed bridges to seismic or other types of dynamic loads.

In a study, which was conducted at the University of Pittsburgh, a number
of time history analyses were performed for a simplified mathematical model of
a cable-stayed bridge (Ref. 5). Several different loadings were considered,
which consisted of: the vertical component of the May 18, 1940 E1 Centro,
California earthquake; a simulated wind loading; and a moving traffic load.
The lumped mass mathematical model which was considered was a single load
bearing plane of a bridge with a geometry similar to the bridge shown in
Figure 1. A finite time step numerical integration procedure was used to solve
the dynamic equations of motion of the mathematical model starting at the dead
load deformed position.

Three distinct types of analyses were performed, consisting of the
following combinations of static analysis and dynamic analysis: linear static
analysis, to compute the structure stiffness in the static dead load deformed
position, and linear dynamic analysis, in which the stiffness was assumed to
remain constant as the structure deformed due to the dynamic loads, hereafter
denoted as a Linear-Linear analysis; nonlinear static analysis, using the
combined incremental and iterative analysis procedure described previously,
and linear dynamic analysis, hereafter denoted as Nonlinear-Linear; and
nonlinear static analysis and nonlinear dynamic analysis, in which the
stiffness of the structure was changed corresponding to the cable tensions and
member loads at the end of each dynamic time step, hereafter denoted as
Nonlinear-Nonlinear.

Due to lack of space, only one set of results will be presented here.
Figure 3 shows the computed variation of the undamped vertical displacement of
the deck at the center of the middle span, due to the E1 Centro earthquake
ground motion. It can be seen that the Nonlinear-Linear and Nonlinear-—
Nonlinear analyses give almost identical results, which vary considerably from
the Linear-Linear analysis. The results of all of the analyses, which have
been performed, indicate that although a nonlinear static analysis is
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necessary to obtain the stiffness of the structure in the dead load deformed
position, a linear dynamic analysis will suffice starting at this position.
This is an important conclusion since a linear time history dynamic analysis
is much simpler and more economical to perform than a nonlinear analysis.
Also, this suggests that linear dynamic analysis techniques, such as the
Response Spectrum Method, are applicable to this type of structure.
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Figure 3 - Time History Analysis

RESPONSE SPECTRUM METHOD

The Response Spectrum Method is a very popular tool for predicting the
response of complex structural systems to earthquake ground motions. The
general procedure is to compute the response of each of the structures
individual modes and then to combine these responses to obtain the overall
response. In many cases, only a few of the modes must be included in
computing any particular response of the system. The specific modes which
must be considered will depend upon the properties of the structure and the
particular quantity which is being computed.

The natural frequencies and mode shapes, of the mathematical model shown
in Figure 1, were computed by a standard eigenvalue analysis. Figure 4 shows
the mode shape for the fundamental frequency. In this mode, the movement
consists primarily of vertical translation of the bridge deck, at a frequency
of 0.321 cycles per second. At any instant, all points on the deck are
translating in the same direction, and the shape is symmetric about the center
of the middle span. The movements of the tops of the towers are very small in

this mode.
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Figure 4 - Fundamental Mode Shape

In the first seven modes, the primary movement consists of various forms
of vertical and transverse displacements of the bridge deck. Very little
movement can be observed at the tops of the towers, except for that caused by
the rotation of the connection between the tower and the deck. The first mode
to exhibit any significant bending in the towers is the eighth mode. After
approximately the fifteenth mode, the movements become localized and are
usually due to axial deformation in a particular member.

It appears, from the mode shapes of this bridge, that the first few modes
will be very important in predicting the displacements and bending moments in
the bridge deck, however, they will not be sufficient to predict the
displacements and moments due to bending in the towers. The majority of the
tower bending will not be picked up unless at least the eighth mode is
included in the analysis.

The next step in this investigation was to use the Response Spectrum
Method to analyze this bridge, utilizing the computed frequencies and mode
shapes. The specific ground motion which was used was that for the
May 18, 1940 E1 Centro, California earthquake. This earthquake was used since
it has been used by many other investigators for other types of structures.
The response spectra for the three measured components of this earthquake
have been developed by the Earthquake Engineering Research Laboratory of
the California Institute of Technology (Ref. 6).

Figures 5a, 5b and 5c¢ show the translation at the top of one of the
towers and the translation of a point on the middle span deck, which were
obtained from the response spectrum analyses, for the three earthquake
components. Figure 5a shows the effect of the vertical earthquake component,
while Figures 5b and 5c show the effect of the two horizontal components
agting in the longitudinal and transverse directions on the bridge. 1In each
figure, the vertical axis is the displacement, which was obtained by using the
square root of the sum of the squares combination procedure for each mode,
while the horizontal axis is the number of modes considered. The authors
realize that various procedures have been recommended in the literature for
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Figure 5 - Response Spectrum Analysis
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combining the individual modes. This procedure was used here since it has been
used by a number of different investigators for a variety of different
structures. The primary purpose of the analyses presented here was not to
investigate the actual level of stress in a cable-stayed bridge, but rather to
study the contribution of the various modes to the overall response.

It can be seen from these plots that the major contribution to
translation of the bridge deck comes from the first few modes, while the
translation of the tops of the towers is significantly affected by the higher
modes. These analyses show that extreme care must be exercised when applying
the Response Spectrum Method to cable-stayed bridge structures since various
components can be excited by different modes. For some responses, only the
first few modes must be considered, while for other responses, the higher
modes make the greatest contribution.
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