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SUMMARY

In the following study, a matrix discrete method based on a finite element
idealization is used and a numerical example is presented as a verification of
the three~dimensional response analysis.

The analysis has proved that the mode shapes of such structures are complex
and damping is an important parameter for achievement of more realistic values
of the dynamic response of the structure.

INTRODUCTION

This study deals with the cable-stayed bridges which are treated as non—
conventional not only because of their large spans but also due to their un-
usual structure when compared to the bridges of the traditional type.

According to the new concept of the cable-stayed bridges, they should con-
sist of cables, towers, beams and decks. The static and dynamic analyses of
these structures are rather complex due to the variety of the components which
are characteristic for these structures. Therefore, a more precise three-dimen-
sional mathematical model should be formulated in order to present the interac-
tion of the structural components. The mathematical model formulated on the
basis of the finite element method gives most reliable results with respect to
these demands. C

. Discretization of a concrete cable-stayed bridge with fan configuration
has been presented. Thus, the free vibrations and the dynamic response of the
bridge in transversal and longitudinal direction have been analysed for such
a mathematical model.

ANALYSIS USING LUMPED-MASS MODEL

Generally speaking, the equilibrium equations for a finite element system
in motion are nonlinear and can be written as:

MU + CU + KU = G + R(t) e (1)

If these equations are linearized i.e., if «the nonlinear terms G from (1) are

not taken into account, the system of equations (1) will be reduced to a system
of equations with small amplitudes of vibration with respect to the static equi-
librium of the model. In this way, the matrix K which represents the total struc-—
tural stiffness can be considered constant while the system is in motion.
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The assemblage of the individual element stiffnesses forms the global stiffness
matrix:

K= % Knm e (2)
m th
where Km is the stiffness matrix of the m element.

Three types of finite elements which have been used durlng the assemblage
process are presented in Fig. (la).,(1b) and (lc), where Km© (2 x 2) is the
matrix of the flexible element, Km (12 x 12) is the matrix of the three—dimen-
sional beam element and Km~ (24 x 24) is the stiffness matrix of the element
obtained by superimposing plate bending and plane stress.

The system of the linearized equations obtained from (1) can be solved
by application of the standard mode superposition method. This will be done,
first, by computation of the circular frequencies and mode shapes, then by de-
coupling of the linearized system and finally by solving the decoupled equi-
librium equations. In the end, the finite element nodal point displacements
are obtained by superposition of the response in each mode.

NUMERICAL EXAMPLE

The theory developed in the previous section has been used to perform
mathematical discretization of a cable~stayed bridge with fan configuration

and to obtain the dynamic characteristics and the response to the earthquake
effect.

The principle characteristics of the bridge - The whole structure is con-
structed of concrete with two solid post-tensioned edge beams and a reinforced
concrete deck. Two concrete towers rise 24 m above the edge beams. Centre to

centre distance of edge beams is 10.4 m; central span between the towers is
112 m and end spans, each 56 m.

The mathematical model of the bridge which has been previously described
is presented in Fig. 2a.

The main characteristics of the mathematical model - The total number of
the finite elements used for the discretization of the structure is 88. 28 rec-—
tangular elements with four nodes have been used for the discretization of the
bridge deck, while the beams' and the towers have been discretized by using 40

beam elements. The discretization of the stays has been accomplished by 16
flexible elements.

Input data have been acquired by using the program for automatic genera-
tion and plotting of the mesh of the mathematical model.

Dynamic characteristics - The natural periods and modes of vibration of
the system have been computed and some of the computed natural periods have
been presented in Table 1. Some characteristic mode shapes are shown in Fig. 3.

For better understanding of the dynamic behaviour of these systems, some
modifications of the basic model have been used. Cross-beams have been fixed, Fig.2,
at each end of the towers in order to obtain portal frames. The dynamic charac-
teristics have been acquired for such a modified basic model.

The %nfluence of the stays upon the dynamic characteristics of the cable-
stayed bridges has been analysed by comparison of the results obtained by using
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the basic model with those acquired by the modified one i.e., those which
have been obtained by ddding stays. The modified model is shown in Fig.2b,
and the vertical vibrations periods for the basic and the modified model
are shown in Table 2.

Response analysis - Response analyses for the basic model and the two
modified ones have been accomplished by using the mode superposition method.

For an. earthquake effect in longitudinal and transversal direction, time
histories of displacements for the most characteristic points of the bridge
model have been obtained. The record of April 15, 1979 Ulcinj2, Montenegro
earthquake, W-E component, has been used with adopted maximum peak acceleration
of 0.24 g.

Damping of 2.5%, 5% and 77 has been used in order to amalyse the in-
fluence of damping upon this type of structures. The maximum displacements for
the characteristic points of the model for different damping degree are given
in Table 3. For damping value of 57, the variation of the displacements at the
characteristic points of the model which occur due to the Ulcinj2, Montenegro
earthquake are presented in Fig. 4.

CONCLUSIONS

From the performed analyses, the following conclusions can be drawn:

- The discretization of these structures should be done by using three-
dimensional models in order to understand the complex mode shapes as well as
to find out the number of necessary modes for the response analysis by mode
superposition.

— During the response analysis by mode superposition, the exact selection
of the number of mode shapes by means of three-dimensional models gives reli-
able results for practical purposes.

— The great differences between the maximum displacement values which
have been obtained for different damping degree point to the importance of
exact evaluation of the damping parameter. '

— The influence of the number of stays upon the dynamic characteristics
of the structure is more expressed during lower mode shapes while slight dif-
ferences are observed with respect to the circular frequencies in case of
higher modes. This can be explained by the fact that in case of higher modes
of vibration, the bridge stays do not participate during vibration.

- This type of structures requires portal frames or A-frames which dec-
rease the torsiomal effect upon the edge beams as well as the influence of the
bending moment upon the bridge deck during an earthquake effect in transversal
direction.
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Vertical vibrations
Mode Period Types of 5
order T(sec) vibrations '§ CsSB-B CSB—-AS
. '§ Tsym. Tant.sym. Tsym. Tant.sym.
1 1.274 |vertical s (sec) (sec) (sec) (sec)
2 0.726 vertical
3 0.706 torsional L 1.274 0.847
4 0.482 |vertical 2 0.726 0.584
5 0.430 torsional 3% | 0.706 0.572
6 0.401 transversal i 0.482 0. 408
7 0.345 | longitud. - -
8 0.343 torsional 5% 0.430 0.383
9 0.234 torsional 6% 0:343 0.316
10 0.233 1 itud.
cbsibu 7 0.224 0.223
11 0.224 |vertical |
12 0.205 torsional CSB—B Cable - stayed bridge - basic model
1 1 . CSB—AS Cable - stayed bridge - added stays
3 0.199 |vertical * — Torsional vibration of cable - stayed bridge
14 0.182 transversal
15 0.152 transversal Table 2. Comparison of the cable stays effect upon the dynamic
characteristics of the two considered models
16 0.120 transversal

Table 1. Some of the computed natural
periods for a basic mathematical
model

Max. displacements at the characteristic points of the
mathematical model

-
[
g®| 31-ov | 31-TDT | 17-TDT | 17P-TDT
©
=]

(cm) (cm) (cm) (cm)
2.5 3.64 2.88 20.68 7,58
5 2.67 2.26 16.56 5.37
7.5 1.95 . 2,00 14.36 4.29
LDV — Vertical displacement at the nodal point under
earthquake effect in longitudinal direction
TDT — Transversal displacement at the nodal point under
‘earthquake effect in transversal direction
17P  — Nodal point 17, Portal Frame

Table 3. Maximum displacements for the characteristic. points
of the model for different damping degree
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