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ABSTRACT

This paper presents the comparison of two models simulating the seismic
performance of a rotor-bearing system commonly encountered in a nuclear power-
plant. The first model treats the rotor as a rigid body subjected to
gyroscopic and coriolis effects. The second model treats the rotor as
flexible. A finite-element-beam-model, is developed to study the influence of
spin, and base rotation. The results of the above study show that the
gyroscopic effects amplify the response of the rotor-bearing systems. The
base rotations of the rotor - bearing system under seismic excitation
contribute significantly to the responses of the rotor.

INTRODUCTION

In recent years, there is considerable interests in studying the seismic
analysis of active mechanical equipments, such as power generator, pumps,
motors, etc. housed in a building. The present paper develops two models and
compares their relative performance for a rotor-bearing system subjected to
seismic activities. The seismic analysis of rotating systems differs from the
seismic analysis of structural sytems in two major aspects: (1) rotor-bearing
interaction effects (2) gyroscopic effects. 1In addition, coriolis effects
become significant when the base of rotating systems is subjected to
rotational motions. Such seismic analysis will permit one to (1) examine the
required minimum fluid film thickness (2) withstand the bearing reaction
forces and (3) to maintain maximum allowable dynamic stresses induced in the
rotor.

MATHEMATICAL DEVELOPMENTS FOR RIGID-BODY MODEL

Figure 1 shows a schematic representation of a rotor-bearing system.
Note the three coordinate systems XYZ: associated with the rotor at G. =¥y,
Yy, Zp» @ssociated with the base, and x_, y_, z_, associated with the rotor
but non-spinning. The mass-center G of the rotor is located at height h. The
rotor is rotating with angular velocity w. The newtons laws of motion for the

rigid body can be applied as F = ma, and MG = HG where F, m, a.» MG’ and HG

denote respectively the resultant force as rotor, mass of rotor, acceleration
of mass center, moment due to external forces, and rate of change of angular
momentum. Let ¢, 8, and ¢ define the precession, nutation and spin angles of
the rotor. Then, because of the specific orientation of the rotor-reference
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Figure 1. Rotor and Base Reference Axes

system, and small rotational displacements, we are able to linearize the
relationships: 6 =w/2 + 0 +0 , and y_ =¥ b +6_. These relationships
will yield the following A}é: Masg“.{ centerxacce¥erati8n, F: External forces on
the rotor, M: External moments on rotor and Fj: Forces acting on the rotor at
the ith statiom.
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where C = C denote damping coefficients and k k. , etc. denote the

‘ 1 xxi? Tyyi
stiffness coefficient due to lubricant film. These relationships when
rearranged will yield the equation of motion

o {X +1el {® + &l {x) =[5} (5)

where [M], [C], [K] and [F] denote respectively the mass, damping stiffness
matrices and external forces due to seismic excitation which includes base
rotation and translation. This can be solved for [X]-rotor displacement using
the Newmark numerical technique.

BEAM MODEL

The beam model of a rotor bearing system subjected to seismic response
permits us to include the following effects: rotary inertia, shear
deformation, gyroscopic effects, rotor-bearing interaction, intermediate disks
and flywheels, axial thrust, axial torque, base translation, and base
rotation. The beam-model for the rotor is developed considering the shaft as
made up of series of circular discs. An elemental disc is shown in Figure
2. Because of small displacements in a seismic activity, we are able to
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Figure 2. Rotor and Base Reference Frames

follow linearize development of equations of motion. The governing equations
of motions for an elemental disc may be written as:
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Where »Q,, denote shear forces, My, M, denote moment, T -denotes external

torque,” P zrepresent axial force, w dendotes rotor angular velocity, A -denotes

cross—sectional area of the disc, p —denotes specific density, a_, a_describe
the mass-center acceleration components of the disk, Uy, Uy, Ox,xﬁ escribe
the displacements of the disc along and about x, y axes, and I and Ip the
moment of inertia about X (or Y) and Z axes — respectively. The external
forces fy and f, per unit length distributed along the rotor axis in X, Yy,
directions can ge expressed as

n
£ = “iil CNPHCIIE (el 1)y (e ) (udy + (ny)i(uy)i} §(s = sy)
(7
n . .
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where in kg ., » etc. describe the stiffness properties and c,y, Cyy>s etc.

describe the damping of the bearing field.

The above equation of motion is in the form of partial differential
equations involving spatial variations S and tamporal variant t. A numerical
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Figure 3. Displacements of Rotor in the Bearings
(Rigid Body Model)
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solution to the problem is obtained using finite elements in the spatial
domain and finite differences in the time domain. However before proceeding
for solution of the above equations, these must be presented in an integral
form. This is achieved by applying Galerkin’s technique.

Using simple linear interpolation for displacements and rotations for a
typical rotor element with two nodes at S; and S, (e.g. Uy = (Ux)lNl(S) +
<Ux)2 No(S), GX = (Sx)lNl(S) + (Gx)zNz(S), etc. where N = (S, - S)/(82 -

Sl)’ the equation of motion can be written as

Do o}, + 161 (o}, + K] {a} ] = e{a}] {q}, (8

ﬁ{q N

T
where {a}© = {U)), (W), (801, (8)5 (T)y, (0)),(8),(8 ), 1,
[M] denotes elemental inertia matrix, [C]e describes a sum total of
gyroscopic matrix, coriolis matrix due to base rotation, and damping matrix
due to bearings located at nodes, [K] describes a sum total of conventional
stiffness matrix for the beam element, geometric stiffness matrix due to axial
force, geometric stiffness matrix due initial axial torque, supplemental
stiffness matrix due to base rotation and stiffness matrix due to bearings
located at the nodes; [Q] denotes a vector of nodal forces and moments due to
base translations and rotation and {q} is a column vector of rotational and
linear displacements at two nodes. Thé above equations can be modified to
include the effect of intermediate disks and flywheels.

The governing equations for the rotor can be obtained by properly
assembling the elemental disk matrcies and vectors. Such governing equations
may be expressed as

M{x} + [cl{x} + [KI{x} = {F} 9)
which can be solved using Newmark’s technique.
COMPARISON STUDY OF THE TWO MODELS

The equations 'of motions obtained for the rigid body model and for the
beam model were solved to obtain the seismic response in terms of rotor
displacements at the bearings. For the rotor mass of 24,000 Kg and flywheel
mass 5000 Kg rotating at 3000 rpm, and moment of inertia for rotor 4.57 X 10
kgm2 and 2500 kgm“ for the flywheel, and for the Elcentro-excitation data,
figures 3, 4, 5 and 6 show the rotor behavior in seismic response for the two
models. The two models show that the effect of base rotation and spin of the
shaft contribute significantly in rotor displacements and dynamic reaction
forces at the bearings. For the the rigid body model however, the rotor
displacement and dynamic reaction forces at the bearings are significantly
lower than those obtained from the response of the beam model.
Computationally, rigid-body model is relatively simple. For the beam model, a
total of 19 elements for the total rotor length of 8.5 m, the time involved
was relatively low on IBM 370/165.
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