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SUMMARY

The problem of nonstationary response of concrete gravity dam-
reservoir systems to nonstationary random vertical ground acceleration is
solved first by a frequency domain approach based on the general method
of Priestly and Shinozuka and the non-random solution of Rosenblueth. In
addition, nonstationary mean square responses are also obtained by inte-
gration of the spectra in the frequency domain. Parallel to the frequency
domain approach, a time domain solution for nonstationary mean square
responses are obtained by a simple analytic method. An excellent agree-
ment between solutions by these two approaches is found.

INTRODUCTION

The problem of earthquake response of gravity dam-reservoir systems
has been investigated extensively by Chopra and his colleagues since 1967
(Ref. 1). Their most recent paper (Ref. 3) gives a comprehensive investi-
gation on the dynamic behavior of gravity dams subjected to either a
horizontal or a vertical harmonic ground excitation, taking into account
the interaction among the elastic dam, the compressible water and the
deformable base of the reservoir. However, most of the past research are
based on the assumption that the ground acceleration is a deterministic
function of time. The only exceptions known to the author are one paper
published by Chopra in 1967 (Ref. 2) and an approximate solution by Rosen-
blueth in 1968 (Ref. 10) with a brief presentation in the book by Newmark
and Rosenblueth (Ref. 8). In Chopra's work, the ground acceleration is
considered as a stationary white noise and the mean square stationary
responses are obtained in integral form. The integrals, unfortunately,
diverge because the system with a rigid reservoir base is undamped and
the stationary excitation persists indefinitely in time, as pointed out
by Chopra. Rosenblueth, on the other hand, centered his attention on the
important design problem of estimating the absolute maximum response of
the dam subjected to a segment of stationary white noise by an approximate
method.

In view of the recognized significance of stochastic approach to
problems of earthquake structural dynamics in general because of the
inherent random nature of the earthquake excitations (Refs. 4, 6, 8), and
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the lack of research in the random aspect of the earthquake-dam-reservoir
problem relative to the extensive research in the non-random aspect, it is
therefore important to seek for fundamental solutions of the problem as a
first step towards a comprehensive solution in the future. With this
perspective in mind an investigation has been carried out and published by
Yang and Charito (Ref. 12) for the two dimensional gravity dam-reservoir
problem subjected to an idealized random earthquake excitation in the
horizontal direction. The difficult problem of diverging mean square
response as experienced by Chopra (Ref. 2) has.been removed by consider—
ing a nonstationary excitation and response.

As the first stochastic investigation of the problem, namely nonsta-
tionary random vibration of the gravity dam-reservoir system subjected to
the vertical component of earthquake ground acceleration, a number of sim-
plifying assumptions are made. These include a one-dimensional analysis,
a rigid dam, nonviscous water, small motion of the system and negligible
surface water wave. Among these assumptions, the effect of dam deforma-
tion has been thoroughly studied and can be included in the stochastic
analysis with no theoretical difficulty. It will, of course, complicate
the numerical analysis considerably. Therefore this effect is left out
for simplicity at this time. The effect of deformable reservoir base, on
the other hand, is taken into account in this investigation. This effect
is important because it serves as a damping mechanism for the system which
leads to bounded system response to both stationary and nonstationmary
excitation. Thus the fundamental difficulties which Chopra encountered in
his 1967 stochastic investigation of the problem (Ref. 2) are treated
directly by setting up a damping mechanism and by considering time-depen-
dent excitation and response.

NON-RANDOM SOLUTION

The fundamental solution in the form of a unit impulse response func-
tion for the hydrodynamic pressure due to a Dirac delta function accelera-
tion in the vertical direction at the reservoir base as given by Rosen-
blueth (Ref. 5, 6) is

==}

hp(y,t) = 1%2_ yg_ ) (—a)n[U(;— Zggiz) —U<t— ZEEi%E:%)], for O<y<H (1)
n=0 )

and t>0 where o = (cowo—cw)/(c0w0+cw) is the refraction coefficient repre-
senting the reduction of response during the refraction and reflection
process of the propagating waves. Also U is the Heaviside unit step func-—
tion wy the unit weight of reservoir base, w that of water, ¢y the sound
speed in reservoir base, ¢ that in water and g .the gravitation accelera-
tion. The function hp(y,t) is zero, or course, for t<0 as required by
the initial condition. For the idealized case of rigid reservoir base
with 0=1.0, hy(t) is undamped and periodic with period of 4H/c. For a
deformable reservoir base with a<1.0, h (t) is damped periodic. Once the
hydrodynamic pressure solutions are obtained, the shear force and over-
turning moment solutions can be readily determined by simple integrations.
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RANDOM EXCITATION AND RESPONSE

A well known nonstationary random process model, which is in the form
of a modulated stationary process, was first proposed by Pristley (Ref. 9).
Since the model is capable of characterizing the main features of earth-
quake accelerations (random magnitude, frequency content as well as
temporal variation) and is suitable for analytic work, it has been grad-
ually accepted for earthquake modeling, for example, by Shinozuka (Ref
11), Liu (Ref. 7), Corotis and Venmarke (Ref. 5), Clough and Penzien
(Ref. 4), and Yang and Charito (Ref. 12). Priestley's model will be used
here for the vertical earthquake ground acceleration a(t) in the following

form:
o

a(t) = [ B(t,w)e **da(w) (2)

-0

in which B(t,w) is a deterministic modulation function and dA(w) is defined
as a zero mean random orthogonal process in that the expected value
E[dA(w)*dA(w')] = 0, when w # w'. When B(t,w) takes the special value of
unity the random process a(t) reduced to the associated stationary process
as(t).

When the reservoir-dam system is excited by such a nonstationary ran-
dom earthquake acceleration a(t), the response hydrodynamic force F(t) on
the dam is also a nonstationary random process with an integral represen-
tation similar to that for a(t). The input-output transfer relationship
for ligear systems with these nonstationary random excitation and respomnse
processes has been obtained by Shinozuka (Ref. 11). For the hydrodynamic
response force on the dam, the nonstationary power spectral density is
given by .

t .
se(e,) = | [ B(e-g,we “Fn(0)az]” 5 W) (3
g=0

in which Sa(w) is the power spectral density of the associated stationary
process of the vertical earthquake ground acceleration a (t), hg(t) the
impulse response function for the hydrodynamic force on the dam and B(t,w)
is the modulation function in Eq. 2. On the basis of this transfer rela-
tion in the frequency domain, ome can determine the transcient frequency
distribution of the mean square hydrodynamic force on the dam from the
specified vertical ground acceleration in terms of ag(t) and B(t,w) and
the non-ramdom response solution hf(t) by Rosenblueth. The total mean
square hydrodynamic¢ force E(F2(t)] can be obtained by integrating Sg(t,w)
over the frequency domain.

NUMERICAL AND ANALYTICAL SOLUTIONS

For the first problem, the nonstationary random vertical ground
acceleration process a(t) is assumed to be a suddenly applied stationary
white noise with a unit step modulation function B(t,w) = U(t) and a
uniform density S, for the associated stationary process ag(t). ‘Although
this is the simplest nonstationary model, it nevertheless is transcient
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in nature and is fundamentally different from the stationmary case. The
transcient spectral densities Sg(t,w) of the hydrodynamic force on the
dam are calculated at various multiples of the natural period Ty = 4H/c
including the long time limiting case where t»®, corresponding to the
stationary response. For each time, the response spectral density
Sg(t,w) covers a frequency range of up to five and half natural frequen-
cies (w; = mc/2H). These results are obtained by a simple numerical inte-
gration technique with very fine time and frequency increments and are
presented in non-dimensional variables, Fig. 2. The total mean square
hydrodynamic forces E[F2(t)] are calculated as a function of time for
values of the reflection coefficient 0.815 < a < 1.0 and are shown in
Fig. 3.

The results obtained so far are based on the Priestley-Shinozuka
solution in the frequency domain. As an alternate approach it is instruc-
tive and useful to -consider the time-domain solution for the problem,
particularly to insure the accuracy of the numerical results. For the
simple nonstationary problem, the mean square response is given by

2 )
E[F7(£)] = 27S [ hg(t-m)de (4)
[e]

The simplicity of this solution is a direct result of the assumed simple
model for the ground acceleration. Moreover, because of the periodicity
of the impulse response function hf(t) as mentioned previously, this inte-
gral can be readily carried out analytically to give

22 .3
7S _(I4+0) P cH™ N
ElF(6)) =~ ] 2D (5)
n=1

where N is the number of half natyral periods in time and in the limiting

stationary response E[F2]+ﬂ50p2CHJ(l+u)/3(1—@). The mean square response

forces from Eq. 5 are plotted in Fig. 3 in the same nondimensional format

as previously used for frequency domain numerical solutions, for the case

of rigid foundation with o = 1.0 and of elastic foundation with o = 0.815.
The time domain solution for a = 0.815 is almost identical to the previous
frequency domain solution.

DISCUSSION OF RESULTS

Fig. 2 shows that the nonstationary spectral densities of the response
hydrodynamic force approach to the stationary case in about ten natural
periods (t=10). The initial spectra are relatively broad in frequency band
than those at later times. All spectra are centered around the first
natural frequency (Q=1.0) with negligible density distribution beyond two
natural frequencies. Fig. 3 shows that the total mean square hydrodynamic
force for the case of elastic reservoir base (a=0.815) increases with time
and approaches to the stationary case in about ten natural periods. As the
rigidity of the reservoir base increases, the refraction coefficient o
increases accordingly, resulting in higher and higher mean square responses.
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The limiting case of a perfectly rigid reservoir base with a = 1.0 is
shown by a straight line and is unbounded as t+~. This unbounded response
is analogous to the undamped vibration under a steady state excitation.
The deformability of the reservoir base serves as a damping mechanism for
the system and that the system response converges as time increases. Note
that the dimensional mean square hydrodynamic force on the dam depends on
the magnitude of the spectral density S, of the vertical ground accelera-
tion, the hydrostatic shear force (Fy = wH2/2) and the first natural fre-
quency (wj = mc/2H) in addition to the refraction coefficient o and the
non~dimensional time (T = t/T = 4H/c).

To gain some engineering insight of the problem, a crude gquantitative
analysis can be worked out as follows. First, it is observed that the
response spectra as shown in Fig. 2 have negligible magnitude beyond the
range of two natural frequencies (Q = 2.0). Consequently, the solution is
applicable for ground excitations with a white spectrum cut-off beyond
Q=2.00r w -Zwl, the so called band-limited spectrum. On this ba51s,
consider the uniform magnitude of the two-sided spectrum S, to be g /4w1,
meaning that the mean square acceleration excitation equals g4 with root
mean square (RMS) value of one grav1tatlonal acceleration. With this
assumed random acceleration, S, = g /4w1, the stationary root mean square
(RMS) hydrodynamic force response can be estimated from the curve with
o = 0.815 in Fig. 2 to be V20 (32/7") Fo or about 2.6 times the hydrostatic
force. Similarly when Sq = g2/400ml then the RMS acceleration equals 0O.lg
and the estimated stationary RMS force becomes about 0.26 times the hydro-
static force. ‘

CONCLUS ION

The problem of nonstationary response of a concrete gravity dam-
reservolr system to nonstationary random vertical ground acceleration is
solved first by a frequency domain approach based on the general method
of Priestly and Shinozuka and the non-random solution of Rosenblueth.
Parallel to the frequency domain approach, a time domain solution for
nonstationary mean square responses are obtained by a simple analytic
method. An excellent agreement between solutions by these two approaches
is obtained for the mean square hydrodynamic force.
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Figure 1. Dam-reservoir system
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Q= w/wl = w/(mc/2H), T = t/Tl = twl/ZTr; o = 0.815,

z = 0 (reservoir base).
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versus
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time T and refraction coefficient o, where

0.2 = 6. 2(1,00/25 0.(22) , © = /1. = tu. /v,
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