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SUMMARY

The question of "how stiffness degradation is influenced by the probabil-
ity distribution of the input earthquake accelerogram peaks" is investigated
in this paper. The earthquake response of a Single Degree Of Freedom (SDOF)
model of a reinforced concrete structure is studied with the aid of NLSPEC, a
nonlinear dynamic analysis computer program (Ref. 1) in which a modified
Clough's model has been implemented. From two classes of accelerogram peak
distributions, six records have been selected as the ground motion inputs. To
interpret the stiffness-degrading behavior of the model a nonhomogeneous
Markov model has been defined and probability-transition matrices are esti-—
mated using the response data. Finally, the results corresponding to the two
earthquake classes are compared and conclusions are made.

INTRODUCT ION

In this paper, the response of a stiffness-degrading SDOF reinforced con-
crete structure excited by two different types of earthquake time histories is
studied. The accelerograms are classified primarily based on their fitted
Exponential Half Tail (EHT) models (Ref. 2). To investigate the significance
of this classification, other influential parameters, namely Richter magni-
tude, epicentral distance, and local site conditions, are held constant. The
amplitudes of the accelerograms have also been scaled to make the results com—
parable within each class and between the classes.

The structural model is a stiffness—degrading SDOF oscillator with fixed
yielding and dynamic characteristics. Taking the initial stiffness of the
model as K_ and the reloading stiffness throughout a respounse time history as
K., the ratio r(t) =K /K has been used to quantify the level of stiffness
degradation. Initial observations of the dynamic responses have indicated
that for both classes of the earthqudke inputs, r(t) is time-dependent. This
phenomenon 1s basically due to the time-variant characteristics of the input
ground motion and is modeled as a nonhomogeneous Markov chain.

The method presented in this study can be applied in development of a
damage assessment procedure based on the stiffness degradation models and
probabilistic ground motion characteristics.
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PROBABILISTIC CHARACTERISTICS OF GROUND MOTION

De Herrera and Zsutty (Ref. 2), in their investigation of defining a
ground motion characteristic which specifies load cycles in terms of number
and value distribution of peak ground accelerations, proposed the EHT wmodel
which is briefly described below.

The peaks, defined as the absolute value of the maximum between two zero
crossings inm a time history, are ordered in decreasing order X,,¥,,...,X .
The X, are random variables with unknown probability density function (pde.
Assum%ng statistical regularity, the model predicts what would be the mean and
standard deviation of the it largest peak if several similar events in terms
of magnitude and epicentral distance occurred.

An exponential pdf on the Xi or the transformed variable Y, = X" [n =
1/2, Weibull; n = 2, Rayleigh] is shown to be appropriate for the 400 strong
ground motions studied.

We recall that an exponential pdf is defined as

= - Ax
Px Ae

where X is the parameter of the pdf.

In order to identify the effects of the type of the accelerogram peaks
pdf on the nonlinear response of a SDOF system, the two extremes of the proba-
bilistic description of peaks are considered (Rayleigh and Weibull). The
acceleration records used in this study are shown in Table 1 and classified as
Rayleigh (RY) or Weibull (WE). The acceleration record No. 1 has been taken
as the reference record and the other five records have been selected and
scaled such that the scaled PGA of all the records are almost the same and

also that large variations among the scaled pdf parameters of each class are
prevented.

STIFFNESS DEGRADATION MODEL

The main purpose of this paper is to study several earthquake responses
of a reinforced concrete SDOF model exhibiting a degrading stiffness property.
This property is assumed to be associated with the crack—-closing phenomenon
(Ref. 3). The dynamic characteristics as well as the load-deflection curve of
the selected structural model are shown in Fig. 1. The implemented stiffness

1cie?razation wodel is a modified version of Clough's model as discussed in
ef. 4.

MARKOV MODEL

. State-space vectors as well as the probability-transition matrices are
estimated using the actual response time histories data. Ten states have been
defined based on equal intervals of r(t) between 0 and 1. For example, state

"1" is defined as r(t) being between 0.9 and 1.0 "10"
. .0 i
between 0.0 and 0.1 inclusive. Relusive, and for state "10

A step is defined as trans

- ition from one st
possibility of returning to the state to another, including the

Initial state. In this study, a "step” can be
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interpreted as transition between any two consecutive zero force positions on
the response hysteresis diagram (Fig. 1). In other words, on this diagram
each cycle corresponds to two successive steps.

From each response time history, the total number of state transitions
(N) as well as the highest level of states visited (Sm) have been observed.
Then each response time history is subdivided into six stages (not necessarily
equivalent in time) to account for the nonhomogeneity of the model. An S, by
Sm probability-transition matrix has been estimated at the end of each and
every stage. The number of stages is taken as six since for all the cases
N/6 is mpch larger than Spe The estimates of the elements of the kth stage

probability—transition matrix Prs (Pij)k’ are calculated as
By )y = s—(tl}?lzl;—“)r)i M

m i’k

where (nij)k = number of observed transitions from state i to state j
at the stage k,

(nj.)i = number of observed transitions initiated from state i.

The state—space vectors at the end of each stage can be found as fol-
lows. Given the initial state-space vector, 44, an S, dimensional vector
{1,0,0,...,0}, the state-space vector at the end of the first stage, qi, is
the transpose of the first row of P;. Similarly, qy is the transpose of the
first row of the product Py;xPy. q3 up to qg are the transpose of the first
row of the products Py xPypxP3, etc. A numerical example of this process being
applied to one of the six response time histories is presented in the next
section.

A CASE STUDY

Table 2 contains the six probability-transition matrices of the six-stage
response time history calculated using earthquake record Wo. 1 as the input.
The numbers written in parentheses are (nj:)y and their sum for each row is
(ni-)k' Products of the matrices are not shown; however, the six-stage state-
space vectors are given in Table 3. For this case the observed values of N
and S_ are 218 and 6, respectively.

DISCUSSION

Referring to Table 4, the final results indicate that the highest level
of stiffness degradation in Rayleigh-type cases is on the average 20% higher
than that of the cases with Weibull-type inputs. This difference may be due
to the fact that the accelerograms of these two types of pdf have identical
PGA but different levels of "average peaks.” TFor the Weibull distribution
used in Ref. 3, the expected value of the upper half tail peaks (greater than
the median) is related to the parameter X by (Agyg)y = 2/\x and a similar
expression for the Rayleigh distribution is (Agyo)g = YW/Z (1/A) = 1.253/X.
Using the values of A given in Table 1, we find the following average peak
values:

(Aaygdy = 6-1 (Aavg)r = 67
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As can be seen, the average peak value of the Rayleigh-type accelerograms
are set to a level more than ten times larger than the average peak value of
the Weibull-type.

Another noticeable difference between the two classes of the results can
be seen by comparing the final state-space vectors and treating them as pdf
with states being taken as the random variable X. The basic parameters of
these discrete pdf, such as the mean (x), the standard deviation (S), and the
coefficient of skewness (g), are shown in Fig. 2. It can be seen that on the
average the final state-space vectors with the Rayleigh-type accelerograms as
inputs have higher mean and standard deviation values and are more skewed
towards the higher states compared with those corresponding to the Weibull-
type inputs. This comparison indicates that on the average the level of
stiffness degradation has been higher for the Rayleigh than for the Weibull
cases, which is consistent with the previous observation. Also, it can be
stated that at the end of the response time histories, the likelihood of the
structural model being at a high-level state is higher for the cases with
Rayleigh—type inputs compared with Weibull ones.

CONCLUSION

It has been observed that for the specific structural model being used in
this study, the highest level of stiffness degradation as well as the likeli-
hood of the model being at different degradation states is influenced by the
type of the pdf of the input accelerogram peaks. "Average peak” value of the
input accelerograms as opposed to the PGA seems to be better related to the
maximum level of stiffness degradation in the earthquake response of a typical
SDOF model. The method presented in this paper can be directly applied in
development of a damage assessment model by assigning appropriate loss factors
to the different levels of stiffness degradation.
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Table 2. Six~Stage Probability-~Transition Matrices with
Record No. 1 as the Input

[0.829 (28) 0.057 (1) 0.029 (0) 0.029 (0) 0.029 (0) 0.029 (0)
0.143 (0) 0.143 (0) 0.143 (0) 0.143 (0) 0.285 (1) 0.143 (0)
0.143 (0) 0.143 (0) 0.143 (0) 0.285 (1) 0.143 (0) 0.143 (0)
0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0)
0.111 (0) 0.111 (0) 0.111 (0) 0.333 (2) 0.223 (1) 0.111 (0)
0.125 (0)  0.125 (0) 0.25 (1) 0.125 (0) 0.25 (1) 0.125 (0)]
@.334 (2) 0.111 (0) 0.111 (0) 0.111 (0) 0.222 (1) 0.111 (0)
0.125 (0) 0.125 (0) 0.250 (1) 0.125 (0) 0.250 (1) 0.125 (0)
0.083 (0) 0.167 (1) 0.083 (0) 0.251 (2) 0.333 (3) 0.083 (0)
0.105 (1) 0.105 (1) 0.263 (4) 0.316 (5) 0.158 (2) 0.053 (0)
0.056 (0) 0.056 (0) 0.111 (1) 0.389 (6) 0.332 (5) 0.056 (0)
0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0)]
[0.125 (0) 0.250 (1) 0.125 (0) 0.125 (0) 0.250 (1) 0.125 (0)]
0.083 (0) 0.083 (0) 0.167 (1) 0.083 (0) 0.502 (5) 0.083 (0)
0.077 (0)  0.231 (2) 0.231 (2) 0.231 (2) 0.154 (1) 0.077 (0)
0.083 (0) 0.167 (1) 0.167 (1) 0.250 (2) 0.250 (2) 0.083 (0)
0.136 (2) 0.136 (2) 0.182 (3) 0.136 (2) 0.318 (6) 0.045 (0)
[0.167 (0)  0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0)]
0.143 (0)  0.143 (0) 0.143 (0) 0.143 (0) 0.286 (1) 0.143 (0)]
0.059 (0) 0.235 (3) 0.176 (2) 0.235 (3) 0.235 (3) 0.059 (0)
0.083 (0) 0.167 (1) 0.167 (1) 0.333 (3) 0.167 (1) 0.083 (0)
0.125 (1) 0.313 (4) 0.188 (2) 0.063 (0) 0.250 (3) 0.063 (0)
0.071 (0) 0.286 (3) 0.143 (1) 0.357 (4) 0.071 (0) 0.071 (0)
[0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0)]
0.182 (1) 0.182 (1) 0.091 (0) 0.182 (1) 0.273 (2) 0.091 (0)]
0.067 (0) 0.133 (1) 0.267 (3) 0.267 (3) 0.200 (2) 0.067 (0)
0.091 (0)  0.455 (4) 0.091 (0) 0.182 (1) 0.091 (0) 0.091 (0)
0.250 (3)  0.250 (3) 0.125 (1) 0.188 (2) 0.125 (1) 0.062 (0)
0.154 (1)  0.077 (0) 0.231 (2) 0.308 (3) 0.154 (1) 0.077 (0)
0.167 (0)  0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0)]
0.077 (0)  0.154 (1) 0.154 (1) 0.308 (3) 0.231 (2) 0.077 (1)]
0.091 (0) 0.091 (0) 0.182 (1) 0.455 (4) 0.091 (0) 0.091 (0)
0.300 (2)  0.100 (0) 0.100 (0) 0.200 (1) 0.200 (1) 0.100 (0)
0.190 (3) 0.143 (2) 0.095 (1) 0.333 (6) 0.190 (3) 0.048 (0)
0.250 (2)  0.250 (2) 0.083 (0) 0.250 (2) 0.083 (0) 0.083 (0)
0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0) 0.167 (0)]
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Table 3

n State—-Space Vectors
0 {1; 0» 0, O, 0: 0}
1 {0.829, 0.057, 0.029, 0.029, 0.029, 0.029}
2 {0.296, 0.113, 0.124, 0.132, 0.227, 0.109}
3 {0.116, 0.183, 0.166, 0.157, 0.273, 0.095}
4 {0.096, 0.231, 0.161, 0.238, 0.179, 0.086}
5 {0.149, 0.209, 0.170, 0.223, 0.159, 0.082}
6 {0.177, 0.144, 0.126, 0.303, 0.157, 0.085}
Table 4
Record No. Final State—Space Vector Class
1 {0.177, 0.144, 0.126, 0.303, 0.157, 0.085} WE
2 {0.187, 0.193, 0.250, 0.282, 0.087} WE
3 {0.125, 0.157, 0.195, 0.23, 0.209, 0.084} WE
4 {0.121, 0.097, 0.141, 0.092, 0.194, 0.279, 0.077} RY
5 {0.1, 0.126, 0.114, 0.114, 0.113, 0.126, 0.18, 0.125} RY
6 {0.129, 0.147, 0.126, 0.117, 0.154, 0.165, 0.164} RY

NATURAL PErIOD = 0.5 SEC.
DAMPING = 5% CRITICAL

Fy = 960 KGM.CM/SEC.2 o o 2
K, = 158 KeM/SEC.?

. |

Figure 1. Load-deflection curve (Ref. 4) and parameters of the stiffness
degradation model.
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earthquake inputs.
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