PARAMETRIC STUDY OF INELASTIC RESPONSE TO SOME EARTHQUAKES RECORDED IN SOUTHERN EUROPE

P. Fajfar (I) and M. Fischinger (II)

Presenting Author: P. Fajfar

SUMMARY

The main results of an extensive parametric study of inelastic response to three different groups of European accelerograms and to the group of standard Californian records are presented by means of mean inelastic response spectra. It has been found that the main features of the European and Californian earthquakes are quite similar, except for the Friuli earthquake, where the seismotectonic elements of the geologic structures seem to be different. The scaling of the ground motion to spectral intensity has been proved to reduce considerably the scatter in response spectra in comparison with the scaling to peak ground acceleration and only slightly in comparison with the scaling to peak ground velocity. The influence of different hysteretic behaviour, simulating predominantly the flexural behaviour without the strength degradation, has been found to be small in the majority of cases. Relative displacements are in the period range 0.8 - 2.5 s practically independent of the strength and of the hysteresis rule and only slightly dependent on the normalized earthquake. In the predominant period range the input energy seems to be a convenient parameter governing design. The spectrum of the normalized input energy is nearly constant in that range for strength levels provided by the code design. Furthermore, it is practically independent of the damping and of the hysteresis. The value of normalized energy varies noticeably for different input motions indicating a better method of scaling, presumably including the duration of strong motion, is to be found.

SCOPE AND OBJECTIVE OF THE STUDY

Three main objectives of the study were:

- (a) The comparison of the characteristics of strong motion records in Southern Europe with the characteristics of well known Californian records;
- (b) The evaluation of the methods for scaling input motions;
- (c) The parametric study of inelastic response to earthquakes. In the study the input motion and the most important structural parameters were varied: strength, initial stiffness (period), hysteretic behaviour, and damping. The results of such an analysis are easily represented by means of response spectra. These spectra usually plot, as a function of the period, displacements or displacements ductility factors required for a specified level of strength parameters. Recently it has been widely recognized that the maximum displacements lack one important feature: they do not reflect the cumulative fatigue-type damage. To study this possibility it is convenient to introduce response parameters which are related to the energy. Different complementary parameters have been proposed (i. e. [3]). In our investigation, among others, the normalized input energy has been used.

⁽I) Assoc. Prof., (II) Assistant
University E. Kardelj in Ljubljana, Dep. of Civil Engineering, Institute of
Structural and Earthquake Engineering, 61000 Ljubljana, Jamova 2, Yugoslavia

SELECTION OF EARTHOUAKE RECORDS

Three different groups of strong-motion records obtained during recent earthquakes in Southern Europe (Friuli, North. Italy 1976; Montenegro, Yugoslavia 1979; Campania, South. Italy 1980) were used in the study. The main characteristic of the Friuli earthquakes is the short duration of the strong ground motion (less than 5 s). The predominant periods of all records are rather narrow-banded from 0.1 to 0.5 s. Montenegro 1979 is a stronger earthquake. The duration of the strong ground motion is 10 - 15 s and the predominant periods of different records are in the whole range from 0.15 to 1.7 s. The records of the Campania earthquake give the evidence of multiple event occurence (three events in 70 s) resulting in a very long duration. The predominant periods of different records are similar to those of the Montenegro earthquake. Only the records with the maximum acceleration greater than 0.15 g in at least one direction were chosen. Because of relatively small number of such records and because of the lack of information of site conditions for some recording stations no attempt has been made to compute site dependent spectral shapes. Some details of the records are given in Table 1.

For the comparison a group of standard Californian accelerograms representative for severe ground motions at moderate epicentral distances was chosen.

The standard Caltech procedure was used for the correction of records. All accelerograms were band pass filtered between 0.1 - 0.33 and 25 - 27 Hz. The applied uniform cut-off periods are justified by the range of frequencies investigated in the study (0.4 - 10 Hz).

SCALING OF THE GROUND MOTION

Three different methods of scaling: (a) to peak ground acceleration $a_{\rm gmax}$, (b) to peak ground velocity $v_{\rm gmax}$, and (c) to spectral intensity of the 5 % damped pseudo velocity spectrum $I_{\rm PVS}$ have been analysed.

In Table 2 the mean coefficients of variation V for displacements and input energy are given for a pattern of the selected periods and strengths values. It has to be noted that some individual V for extreme periods (particularly 0.1 s) and strengths (0.2 and 5) are higher. In the mid-period range considered, the normalisation to $a_{\rm gmax}$ obviously yields the largest dispersion. As expected [2], the normalisation to spectral intensity reduces the dispersion. However, the differences between scaling to $v_{\rm gmax}$ or Ipys are only slight. Due to the easier prediction of $v_{\rm gmax}$ in comparison with the spectral intensity of any kind, the scaling to $v_{\rm gmax}$ was chosen in the parametric study.

While the scaling to $v_{\rm gmax}$ is quite satisfactory for the displacements in the mid-period range (average V = 0.30 - 0.35), it appears that the duration of the ground motion has to be considered in computing such parameters as energy, the number of yield excursions or acumulated plastic deformations.

It was proved again (see [4]) that normalizing to $v_{\rm gmax}$ shows nearly constant V over the mid-frequency range, and is practically independent of the strength level. Furthermore, it was found that on the average the chosen hysteretic rule and damping have no important influence on V. However, it can be noted that V for the various registrations of the same earthquake in each European group is considerably greater than of different USA earthquakes. It is believed that this difference can be attributed predominantly to larger differences in soil conditions of the European stations considered in the study. The method of scaling to $I_{\rm PVS}$ leads to the similar observations than scaling to $v_{\rm gmax}$.

STRUCTURAL SYSTEMS

One degree of freedom systems have been investigated. Various hysteresis models, simulating dominantly flexural behaviour, were used (Fig. 1):
(a) Elastoplastic model, (b) Bilinear model, (c) Bilinear model with unloading stiffness degradation ([5]), (d) Degrading stiffness 0 model ([6]).

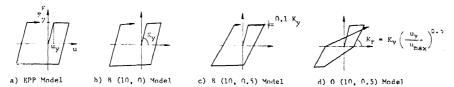


Fig. 1. Hysteresis models

The strenth parameter η which is defined as a ratio between the yield resistance $F_{\gamma},$ divided by the mass of the system and by the peak ground acceleration

$$\eta = F_y/(m a_{gmax})$$

was varied. The value $\eta = 5$ was used to obtain elastic behaviour.

Mass proportional viscous damping was used. To study the effect of damping a considerable number of 2 % damped systems was investigated.

DISPLACEMENT SPECTRA

The displacements are presented by means of the mean displacement (Figs. 2-7) and displacement ductility (Figs. 14-16) spectra for different groups of earthquakes and different hystereses. All input motion were scaled to $v_{\rm gmax} = 50$ cm/s (denoted by F1 in figures).

It is the most outstanding feature of displacement spectra that for the periods greater than approximately $0.8~\rm s$ the maximum displacements are practically independent of:

- (a) The strength level and hysteresis. Only a slight decrease of displacements is observed for lower strengths and it is greater for EPP and bilinear models than for the O model.
- (b) The group of accelerograms (Figs. 2,3,5). Only for the Friuli earthquake (Fig. 4) the displacements are noticeably lower.

 The coefficient of variation is relatively small (see Table 2).

Concerning the regularity of curves the preliminary formula for the approximate estimation of the maximum relative displacement is proposed, which fits the mean values of the displacements for Montenegro, the U. S. A. and Southern Italy ground motions, while it is conservative for the Friuli records:

$$u_{max} = 0.16 \ (T+1) \ v_{gmax} \qquad \text{for } 0.8 \le T \le 2.5 \ \text{s} \qquad \text{and } \xi = 5 \ \%$$
 where u_{max} is the maximum relative displacement [cm], v_{gmax} is the peak ground velocity [cm/s], and T is the period of the structure [s]. The associated coefficient of the variation is about 30 per cent.

For stiffer structures, where displacements increase with the decreasing strength level, the influence of different hysteretic models is noticeable. The increase is the greatest for the EPP model. A decrease in damping results in an increase of displacements (compare Figs. 5 and 17, 15 and 18).

INPUT ENERGY SPECTRA

The input energy E_I , defined as the work of equivalent loading on relative displacements and equal to the sum of the hysteretic, damping, strain and kinetic energy, has been found practically independent of the damping coefficient (Figs. 11 and 19). Therefore it is considered a more appropriate parameter than the hysteretic energy, which has been also investigated. The normalized input energy

$$\overline{E}_{T} = E_{T}/(m a_{omax})$$

is believed to be the most convenient for the presentation.

The mean spectra for various earthquakes scaled by $v_{\rm gmax}=50$ cm/s and for different hysteresis models are given in Figs. 8 - 13. The elastic spectra ($\eta=5$) clearly reflect the predominant periods of earthquakes. The spectra for lower η values are higher than elastic spectra in the short period range (especially for 0 hysteresis) and lower in the long period range of the considered period region. For η values, usually used in design (0.4 - 1.0), the spectra were found to be nearly constant in the vicinity of the predominant period range. In this range, the value of normalized input energy is not much dependent on the strength of the structure, on the hysteresis (Figs. 11 - 13), and on damping (Figs. 11 and 19). Considering these observations a preliminary formula for an approximate estimation of maximum input energy is proposed:

$$E_{Imax} = 0.7 \text{ m } a_{gmax} \text{ } v_{gmax}$$

The peak ground velocity should be expressed in [cm/s] and the normalized input energy $E_{Imax}/(m a_{gmax})$ in [cm].

Unfortunately, in the contrast with displacements, the value of maximum energy varies noticeably for different ground motions (coefficient of variation is up to 0.76). It is believed that scaling by a factor involving duration of ground motion as a parameter would yield better results.

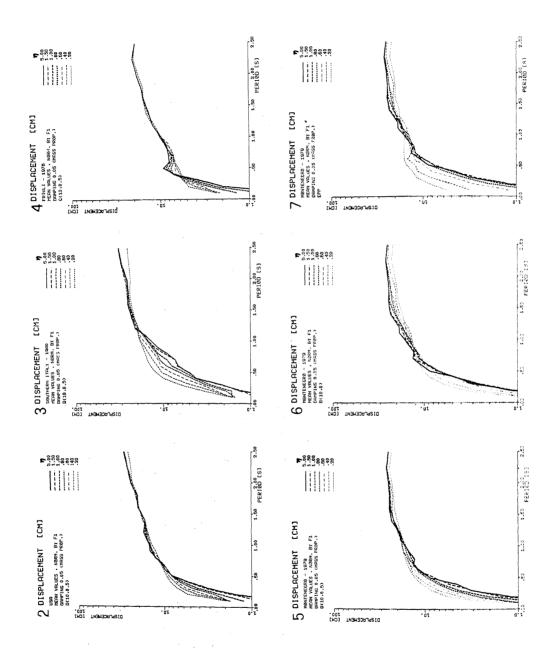
ACKNOWLEDGEMENTS

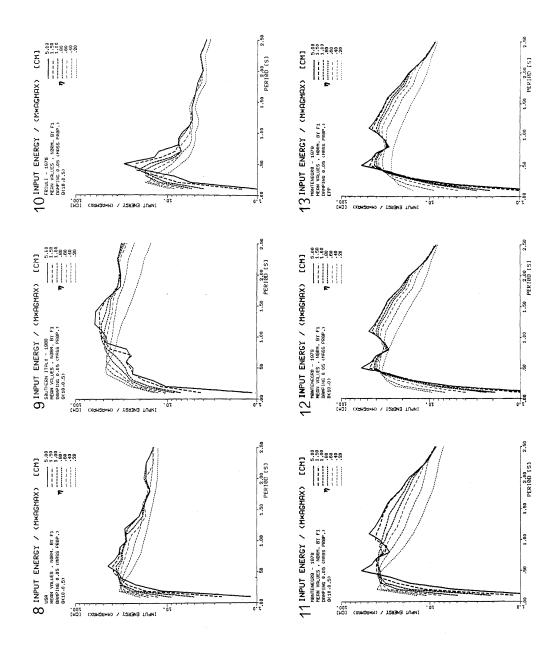
The study was partly supported by the Research Community of Slovenia. The writers thank Prof. V. Ciampi, Universita di Roma, who provided the tape with Italian records. The assistance of Z. Breška in the processing of records and of I. Kovačič in the computing is gratefully acknowledged.

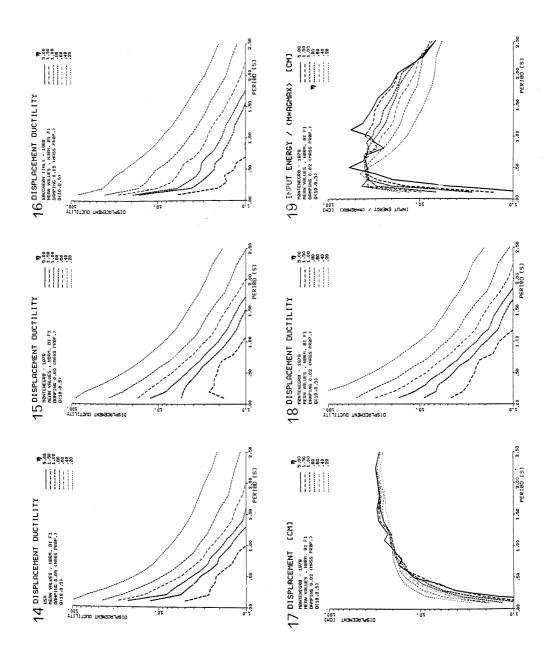
REFERENCES

- Faccioli E., Measures of strong ground motion derived from a stochastic source model, Soil Pyn. and Farthq. Eng., Vol. 2, No. 3, pp. 135 - 149, 1983.
- [2] Iwan, W. D., Estimating Inelastic Response Spectra from Elastic Spectra, Eartha. Eng. and Struct. Dyn., Vol.7, No 4, pp. 375 - 388, 1980.
- [3] Mahin S. A., Bertero V. V., An Evaluation of Inelastic Seismic Design Spectra, Journal of Struct. Div., ASCE, Vol. 107, No. ST4, pp. 1777 - 1795, 1981.
- [4] Newmark, N. M., Ridell, R., A Statistical Study of Inelastic Response Spectra, Proc. of the Second V.S. National Conf. on Earting. Eng., pp. 495 - 504, 1979.
- [5] Otani, S., Hysteresis Models of Reinforced Concrete for Earthquake Response Analysis, Journal of the Fac. of Eng., Univ. of Tokyo, Vol. 36, No. 2, pp. 125, 1981.
- [6] Saildi M., Sozen M. A., Simple Nonlinear Seismic Analysis of R/C Structures, Journal of Struct. Piv., ASCE, Vol. 107, No ST5, pp. 937 - 952, 1981.
- [7] Seed H. B., Upas C., Lysmer J., Site Dependent Spectra for Earthquake-Resistant Design, Bull. Seiam. Soc. Am. Vol.66, No. 1, pp. 221-243, 1976.

Table 1: Data of strong-motion records


Gr.	Earthquake	Date	Mag.	Depth	Station	Record	Dist.	Soil	Comp.	,	T.,	T 7	Dur.
	·		,	[km]		Ident.	[km]	Type	comp.	a _{max}	max	IPVS	1 1
			(1)	,,		ruene.				[cm/s ²]	[cm/s]	1	
			(17				(1)	(3)			<u> </u>	[cm]	(4)
L. S. A.	Lower Calif.	1934	6.5		El Centro	(EERL)	-0				}		
	Lower Carris	7,7,7	".,		r.i Centro	B024	58	1	S00W S90W	159 179	19 11	54 47	25 25
	Imp. Wailey	1940	6.6		El Centro	A001	8	1	SOOE	341	31	134	30
								,	590W	213	27	114	30
	West Wash.	1949	71 -		Olympia	8029	20	2:	NO4W	158	18	75	25
	Kern Coun.	1352	7.6		Taft	A004	56	1	1156E N21E	274 152	17	78 58	25 50
			ML=7.2 6.6		1010	דנייים	20	'	569E	177	16	65	50
	San Fern.	1971	6.6		Castalc	0056	21	1	N21E	311	16	52	25
									N69W	262	28	79	25
_						(ENEL)							
	Friuli 1976	05/11	ML=6.3	7	To I mezzo	038	24	1	NS	342	20	72	15
	Friuli 1976	00/16		8				_	EW	310	32	83	15
FRIULI	Friuli 19/6	03/15 03H/15M	ML=6.0	ח	Forgaria	152	17	2	NS	254	10	28	15
Ē	Friuli 1976		M1 =5.9	12	Forgaria	168	16	2	EW NS	210 299	9 23	29 51	15 15
		09H/21M	1.0					"	EW	323	22	72	15
			}		San Rocco	169	16	1	NS	136	12	47	15
l									EW	228	17	56	15
						(12115)							
ì i	Montenegro	04/15	ML=6.7	10-30	Petrovac	E58	29	2	NS.	433	39	145	20
-		1979	Mc=						EW	299	25	78	25
5			6.9-7.3		Ulcinj 1	E59	13	2	NS EW	279 234	39 46	159 184	25 25
1 2					Ulcini 2	E60	13	1	NS	165	17	74	25
MONTELEGRO					0.0, 2		,,	•	EW	214	25	124	25
£					Bar	E61	11	2	NS	356	42	204	25
1							_		E₩	350	53	250	25
1			1		Hercegnovi	E62	65	1	₩S EW	211 225	14	55 45	25 25
-									EW	225	12	- ">	43
I TAL Y						(ENEL)	(2)	ŀ					
	Campania		ML=6.5	10-20	Bannoll	621	22		NS EW	138 167	21 30	79 119	60 60
		ניניכו	M5=6.9		Brienza	624	38		NS	210	12	41	60
SOUTH.				1			J.,		EW	155	9	34	60
				l	Sturno	624	37		NS	212	34	133	60
			ĺ	1					EW	288	54	165	60
1				ļ	Calitri	636	26		NS EW	150 170	25 27	112	80 80
1			l	1				L	EW	1/0	2/	114	00


Data are different according to different sources. The magnitudes and distances of Calif. earthq. are taken from [7], the magnitudes M_L for Europ. earthq. from [1].
 Hypocentral distance
 Soil profile type: 1 = Rock and stiff soil sites, 2 = Others
 Duration of ground motion considered in the analysis


Table 2: Average coefficients of variations in per cents for displacement (u) and input energy (E_T)

Γ		Group of input motions										
	Method of scaling	U. S. A.	Friuli	Montenegro	Southern Italy	All accel.	All accel except Friuli	Montenegro and S. Italy				
u	Vg max 1 _{PVS} a _{g max}	18 17 33	32 27 51	33 28 55	27 25 48	34 28 65	30 - -	32 - -				
ŧ.	Vq max Ipvs aq max	41 34 56	63 59 85	4.6 4.4 6.5	62 54 74	76 70 105	-	-				

All coefficients have been obtained for Q hysteresis.

