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SUMMARY

This paper presents some simple analytical methods for the dynamic analy-
sis of long, narrow buildings that have significant in-plane floor deforma-
tions. One- and two-story buildings with stiff end walls have been analyzed
by treating their floors and walls as bending and shear beams, respectively.
The resulting equations of motion and boundary conditions are solved exactly
to obtain the natural frequencies and the mode shapes. Floors of multistory
buildings with end walls are modeled as a uniformly-distributed beam system.
Buildings with uniformly-distributed frames or walls are modeled as
vertically-oriented anisotropic plates.

INTRODUCTION

In the dynamic analyses of buildings, it is normally assumed that the
floors are rigid in their own plane. This assumption, although acceptable for
many structures, is not realistic for buildings with certain configurations.
Forced vibration tests conducted on some buildings (e.g., Ref. 1 and 2) and
performance of many others during past earthquakes (some such examples are
described in Ref. 3) clearly show that the in-plane floor flexibility of long,
narrow buildings and buildings with stiff end walls should be taken into con-
sideration in their earthquake analysis. This paper presents new analytical
methods for the treatment of some important classes of buildings for which the
floor diaphragm deformations are significant.

EFFECTS OF IN-PLANE FLOOR FLEXIBILITY

Significant in-plane floor flexiblity affects the dynamic behavior of
buildings in many ways. First of all, the dynamic properties (e.g., frequen-
cies and mode shapes) are different from those obtained with assumptions of
rigid diaphragms. This influences the determinations of total dynamic forces
acting on the structure. Also, the distribution of total lateral forces
among the various vertical members (frames or walls) is govermed by the in-
plane stiffness of the floors. Finally, large in-plane floor deformations
lead to twisting of vertical members. As a result, the joints between these
and the floors, or the vertical member itself can suffer damage during an
earthquake if not designed for such deformations.

PROPOSED MODELS AND ASSUMPTIONS

It is assumed that the structure is linearly elastic and that frequencies
and mode shapes are not significantly affected by damping. Thus, in the
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analysis presented in this paper, damping is neglected. However, it can be
introduced later in the modal equations. The buildings are assumed to be long
and narrow, and therefore, in-plane flexibility of the floors is significant
only in the transverse direction of the structure. In the longitudinal direc-
tion, the building can be analyzed by conventional methods that treat the
floor as rigid in its own plane. It is assumed that the lateral load
resisting elements in the longitudinal direction (frames and/or walls) do not
contribute any stiffness in the transverse direction. However, it is possible
to include their influence in these models in an approximate manner (Ref. 3).

The proposed method analyzes single- and double-story buildings with end
walls by treating the floors as bending (Bernoulli-Euler) and shear beams,
respectively. The dynamic equations of motion and the boundary conditions for
the floors and the walls are solved exactly to obtain a transcendental charac-
teristic equation. This equation can be solved numerically to obtain the
natural frequencies of the structure, which can be substituted in the appro-
priate expressions to obtain mode shapes. Once the frequencies and the mode
shapes are known for a structure, complete dynamic response can be obtained
either by time-history analysis or by response-spectrum techniques.

The floors of multistory buildings with end walls are idealized as
equivalent, distributed bending beams while the end walls (or frames) are
treated as bending or shear beams. Again, the resulting equations are solved
for appropriate boundary conditions. Finally, buildings that consist of a
uniform distribution of identical transverse frames (or walls) along the
length of the building and of identical floors along the height of the
building are modeled as vertically-oriented anisotropic plates, described
later in the paper. This last model enables one to draw some useful
qualitative conclusions about such structures.

SINGLE-STORY BUILDINGS WITH END WALLS

Long and narrow single-story buildings whose lateral load resistance in
the transverse direction is provided by only two walls placed at the two ends,
have been of considerable interest in the past (e.g., Ref. 4). Such buildings
are commonly used for schools, hospitals or offices where movable partition
walls are preferred for functional flexibility.

Consider one such building that has two identical end walls of height h
and a long roof of length 2L (Fig. 1). Any intermediate columns that may
exist are assumed to be sharing only the vertical loads and provide no lateral
support. For vibrations in the z -direction, the roof can be treated as a
bending beam due to its large length-to-width ratio, and the end walls as
shear beams (low height-to-width ratio). The equations of motion for free
vibrations for the roof and the wall can be written in terms of nondimensional
coordinates as: )

. 4
.Elllu,xxxx(x’t) +mL u,tt(x’t) = 0 (1a)
kv, (y,8) - mh%, _ (y,8) = 0 (1b)
27 1,yy7° 27 "1,tt s
kv (y,t) - m hzv (y,t) = 0 (1c)
2 2,yy7° 2 2,tt 7
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in which EjI; is the flexural stiffness of the roof; kp(=k“A,G,) is the shear
stiffness of the walls; k” is the shape factor; Ao is the area of cross-
section of the wall; Gy is the shear modulus for the wallj m; and my are mass
per unit length or height of the roof and the wall, respectively; and (x,v)
are defined as:

= ‘}EL ' = X; 9
X I , y 5 2

Using the symmetry of the structure, only the right half of the structure
needs to be analyzed. The boundary conditions for the symmetric (transla-
tional) modes of vibration of the structure are:

1) u X(X=0,t) = 0 (slope is zero at mid-span)
(2) u (x=0,t) =0 (shear is zero at mid-span)
» XXX
(3) vl(y=0,t) =0 (zero displacement at the bottom end of walls)

(4) u(x=1l,t) = vl(y=l,t) (displacement compatability)

(5) u e (x=1,t) = q,v y(y=1,t) (force balance at the junction)

,X 11,
where = k2L3 (3
4T EInR
(6) u,xx(x=l,t) = —qzu,x(x=l,t) (moment balance at the junction)
where gq, = _EEEL (4)
2 ElIl

and C2 is the torsional rigidity of the end walls.

Equations (la,b,c) can be solved using the method of separation of
variables for the above boundary conditions (Ref. 3) to obtain the following
characteristic equations:

(o cosh a + q, sinh oc)(a3 sin o sin 8 - qlB cos o cos B) +

+ (0 cos o + 49 sin a)(a3 sinh ¢ sin B ~ q18 cosh a cos B) =0 (5)

4 2
m, L m, h
2
where a4 = ElI w2 s 62 - 2 w (6)
171 2

and w is the natural frequency of the structure. Equations (5) and (6) can be
solved numerically to obtain the natural frequencies of the system. These can
then be substituted into the following expressions to obtain the corresponding
mode shapes.
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U(x) = A[(a cosh o + q, sinh o) cos ax + (@ cos a + g sin a) cosh ax]

-lsx<l  (7a)

Vl(y) = Vz(y) = Afcos o (o cosh a + q, sinh a) + cosh a (a cos o + 9, sin a)]-

. sin By 0Osy<l  (7b)

sin B

Similar expressions for antisymmetric (torsional) modes of vibration have
been derived in Ref. 3. In general the torsional stiffness of the end walls
(Cp) is quite insignificant and can be neglected. Hence, expressions (5) and
(7) can be further simplified by taking the limit as g, = 0. Ref. 3 also
illustrates the use of perturbation techniques to obtaIn the fundamental fre-
quency of the structure in an approximate, simpler manner.

The method described herein can also be applied for more complex single-
story buildings and similar two-story structures. Some of these cases are
solved in Ref. 3.

MULTISTORY BUILDINGS WITH END WALLS

The method described in the previous section becomes less attractive for
buildings with several stories due to the increased complexity of the algebra.
Therefore, for multistory buildings with two end walls, another approach is
proposed. This requires an additional approximation wherein the floors are
idealized as a continuous beam system in which the mass and the stiffness
properties of the floors are distributed uniformly over the height of the
structure. These distributed beams are such that the adjacent beams of
infinitesimal depth have no contact with each other. In this approach, one
needs to write only one differential equation for the floor system and one
differential equation for each end wall.

Consider one such structure as shown in Fig. (2). The floors, being long
and narrow, can be treated as bending beams. The end walls are assumed to
have large height-to-width ratio and are treated as bending beams. They can,
however, be modeled by shear beams or even by Timoshenko beams depending upon
the building configuration. The equations of motion for the floor system and
the right-side wall can be written in the nondimensional coordinates x and y
as

4
* * =
ElIl u,xxxx(x’y’t) +my L u,tt(x,y,t% - 2h4 (8a)
4 11 ‘
I + - —— = =
E2 Zvl,yy y(y,t) m2h vl,tt(y’t) L3 u,xxx (x=1,y,t) (8b)

where Ej and E; are the modulus of elasticity for the floors and the walls,
respectively; I;* is the moment of inertia of floér—system cross—section per
unit height; m;* is the mass per unit area (in x"-y~ plane) of the floors;

Iy is the moment of inertia of the end wall cross-section; and mp is the mass
per unit height of walls.

The last term in equation (8b) is introduced by end shears in the dis-
tributed floor system. These equations can be solved for appropriate boundary
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conditions (Ref. 3) to obtain the following characteristic equation and mode
shape expressions for the symmetric modes of vibration of the structure:

cos Bcosh BR+1 = 0 (92a)
where
4 4
h E.I.*h 3
4 M
gY = W+ 2L % tan o+ tanh @) (9b)
E.I 3 2
272 E.I.L
272
4 m *L4 9
o = ) (9¢)
B
and
_ - p|sin By - sinh By cos By - cosh @X}
Vl(y) V2(y) B[ sin B + sinh B cos B + cosh B Osy=l (10a)
_ B|cos ax , cosh ax -l=x=<1
UGx,y) = 2 [cos o | cosh a JVl(y) O<y<l (10b)

where x and y are defined by equations (2). The above expressions have been
obtained for the case where the torsional stiffness of end walls is negligible.
Expressions for antisymmetric (torsional) modes of vibration and for the case
when the end walls (or frames) are more appropriately modeled as shear beams
can be found in Ref. 3. Note that the equation (9a) is the same as the
characteristic equation of a cantilever beam.

MULTISTORY BUILDINGS WITH UNIFORMLY DISTRIBUTED FRAMES (OR WALLS)

This important class of buildings consisting of several frames (or walls)
that are uniformly spaced along the length of the building, is modeled as a
vertically-oriented anisotropic plate. The plate model is the two-dimensional
analog of the shear-beam models that are often used for studying the dynamics
of buildings (e.g., Ref. 5). The plate is such that a horizontal strip of the
plate has only bending flexibility while vertical strips have only shear flexi-
bility (or bending flexibility in case of walls). The twisting stiffness of
the floors and the frames (or walls), being small compared to the bending
stiffness, is neglected. This leads to the following equation of motion for
the plate (Ref. 3):

N BAW(X)Yst) k73 82W(X,y,t) _ BZW(X t)
D - K = - (ll)
1 4 2 2 2
0% oy ot

in which D. is the flexural stiffness of a horizontal strip of the plate, of
unit width; Ky is the shear stiffness of a vertical strip of the plate, of
unit width; and m is the mass per unit area (in x-y plane) of the plate. The
coordinate system is shown in Fig. (3).

Due to the absence of cross derivatives, this equation can be solved by
the method of separation of variables for the boundary conditions: fixed at
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the bottom and free at the remaining edges. The resulting expressions for the
frequency and mode shape are:

K, .
‘ @i-n7 [ %2 i=1,2 (12a)
%13 2h ™ 3=1,2,3,...
4 %
) g) A N2 2=
L ,(1 R 1=3,4,5,. (1259
13 mll+ 4mh2 i=1,2,3,
Wo.(x,v) = A sin (2:;l)ﬂ v j=1,2,3,... (13a)
13 2h
= A (x-}) sin ZLEDT 3=1,2,3,... (13b)

ij (x,¥) 7h

it
i

sin &.x + sinh a.x cos G.xX + cosh a.x
W, (x,7) i i i i )
Wiy (5

sin &,1 - sinh 0.1 cos a,l + cosh a1
1 1 1 1

cos al cosh ol =1 (13c)

bl

This indicates that the frequencies of the structure can be obtained by
simply taking the square root of the sum of the squares of the floor frequen-
cies, when treated as free-free beams, and of the frame frequencies. Simi-
larly, the mode shapes can be obtained by superposition of the floor modes and
the frame modes. Due to the rigid body modes of the floors with free-free
boundary conditions, the structure possesses all the modes that one obtains by
analysis based on the assumption of rigid floors, plus some additional modes
involving in-plane deformatiomns. It can be shown (Ref. 3) that the modes with
diaphragm deformations have zero participation factors for uniform ground
motion. Thus, it is concluded that such buildings can be analyzed for uniform
earthquake motion with the usual rigid-floor assumption without introducing an
additional approximation. This result has also been shown for a discrete
lumped-mass model of such structures (Ref. 6). A similar result holds when
the building has a uniform distribution of walls instead of frames. It is
interesting to note the results of a finite element, parametric study on a
building with five cross-walls reported by Unemori, et al. (Ref. 7). They
found that the modes involving floor diaphragm deformations had very small
participation factors for uniform ground motion.

DISCUSSION AND CONCLUSIONS

Simple analytical procedures have been presented for the dynamic analysis
of several classes of buildings that have the possiblity of significant in-
plane floor deformations. The proposed methods are exact for some of the
buildings. For others, although approximate, they yield very useful informa-
tion about the way such structures behave dynamically, without requiring
significant numerical effort. Because of their simplicity, they can be
employed as useful design tools, to evaluate whether or not the floor defor-
mations are significant, and if so, their impact on the determination of the
dynamic forces on the structure. Even though relatively simple structures
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have been dealt with in the present paper, the technique is general enough to
be used for more complex structural systems. For example, the method has been
applied to the earthquake response of the Imperial County Services Building in
its transverse direction (Ref. 3). This six-story structure consisted of two
rather stiff end walls in the upper stories and several walls in the ground
story, thus requiring the second floor slab to transfer the lateral forces
from the end walls above it to the first-story walls below.

An anisotropic plate has been proposed to model buildings with uniformly
placed frames or walls. This model is also conveniently solved for mode
shapes, frequencies and participation factors. Fram these results, it has
been shown that although these structures possess modes involving significant
floor deformations, these modes are not excited by the uniform ground motion.
Thus, this last category of buildings can be analyzed by conventional
methods, treating the floors as rigid in their own planes.

ACKNOWLEDGMENTS

The work presented in this paper was supported by the National Science
Foundation, Earthquake Hazard Mitigation Program, under Grant No. CEE-81-
19962.

REFERENCES

(1) Blume, J.A., R.L. Sharpe and E. Elsesser, 1961, "A Structural-Dynamic
Investigation of Fifteen School Buildings Subjected to Simulated Earthquake
Motion," Division of Architecture, California State Printing Division,
Sacramento, California.

(2) Nielsen, N.N., 1964, '"Dynamic Response of Multistory Buildings,"
Earthquake Engineering Research Laboratory Report, California Institute of
Technology, Pasadena, California.

(3) Jain, S.K., 1983, "Analytical Models for the Dynamics of Buildings,"
Earthquake Engineering Research Laboratory Report, No. 83-02, California
Institute of Technology, Pasadena, California.

(4) Jhaveri, D. and J.A. Blume, 1969, "Time-History Response of Buildings with
Unusual Configurations," Proceedings of the Fourth World Conference on Earth-
quake Engineering, Santiago, Chile, Vol. 2, pp. 155-170.

(5) Jennings, P.C., 1969, "Spectrum Techniques for Tall Buldings,"
Proceedings of the Fourth World Conference on Earthquake Engineering, Santiago,
Chile, Vol. 2, pp. A-3, 61-74.

(6) Jain, S.K., 1984, '"Seismic Response of Buildings with Flexible Floors,"
to be published in the January, 1984 issue of the Journal of Engineering
Mechanics, American Society of Civil Engineers.

(7) Unemori, A.L., J.M. Roesset, and J.M. Becker, 1980, "Effect of Inplane
Floor Slab Flexiblity on the Response of Crosswall Building Systems," in
Reinforced Concrete Structures Subjected to Wind and Earthquake Forces, ACE

Publication SP-63, pp. 113-134.

749



*STTBM 10 sSawelg poiInqTalsTg ATwWiIoyTup
Y3itm s3uIpTIng Ioj TIpoly snonuljuo) ‘¢ °*8rg

xAIIV\

/Sy

E&R

T

1

(1,£)'a ﬁ

z

(4 xve\

“STTEM
pug yatM SurpTINg AI0ISTITNH B JO TI9POR 'g "81d

N3LSAS Wv3g
aaLnalyLsia

/
/
/

(4K x)'

.4
7

1A§<mm HV3HS
| == d0 O9NION38

/

(44,65 x)n 4

I a2 JI_

"STTBM PUud YITA
SurprIng A103g-2uQ ® JO TOPOW ‘T °*8Td

(K|

e

750





