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SUMMARY

A new 2-D planar R/C line element model is presented which considers
axial force-moment interaction in calculating the element stiffness. Using
a simplified Takeda type hysteresis model to describe the moment—curvature
relationship at the critical section, a frame colummn stiffness is derived
which also accounts for the finite length of any inelastic regions. The
versatility of this model 1is demonstrated via its comparison with test
results on a single column element. The new model is implemented in a
computer program suitable for static and dynamic analysis of wall-frame
and/or coupled shear wall structures. The reliability of the results is
tested against measured responses of two coupled shear wall structures ,
which were subjected to simulated earthquake motions on the University of
Illinois Earthquake Simulater.

INTRODUCTION

Computer analysis of a structure requires an analytical model that
accurately represents the characteristics of the structural system. A case
in point is the coupled shear wall where the existance of strong coupling
between axial force and flexure needs a proper modeling. This paper
presents procedures that provide for modeling of column elements which may
have this coupling present. The material of this paper is taken from the
Ph. D. thesis prepared by the senior author. A detailed review of existing
analytical models for general R/C systems is given in Ref. 1.

COLUMN ELEMENT MODEL

For this model, the element chord zone, i.e. clear span, is considered
to consist of two types of regioms, an elastic zome plus two variable length
inelastic zones at the ends of the member, as shown in Fig. 1l. Inelastic
actions are confined to these element ends where the curvature distribution
is determined with the aid of idealized moment-curvature hysteresis rules.
In order to represent the joint core zones at the member ends, rigid emnd
links can also be specified. The cross sectional stiffness properties of
the elastic zone, which are not constant, are calculated based on the change
of the axial force. For the inelastic zones the effective section stiffness
properties are determined from an appropriate moment-curvature hysteresis
idealization. The effective section stiffness of each inelastic zone is
assumed to be constant throughout the length of that zone. The imelastic
length is considered to depend on the loading history and the axial force.
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The inelastic zone lengths, which may be different at the two ends of the
member, do not remain constant throughout the response. However, change in
the inelastic length is considered only when the end moment is in the
strain-hardening phase. The inelastic length is assumed to be constant and
equal to the maximum value of inelastic length when the end moment moves

back out of strain-hardening.

The flexural flexibility matrix of a member chord zone can be readily
formulated once the inelastic zone stiffness and inelastic length at each
end have been established. Due to the significant contribution to end
rotation resulting from bond slippage in the joint a nonlinear rotational
spring, as an additional flexibility for an element, 1is provided at each
member”s ends. It should be mentioned here that for comstant axial force,
the proposed model is almost similar to the model which was initially
developed by Soleimani (Ref. 2). The main modifications in the proposed
model include the effect of changing axial force on the element stiffness as
well as on the yield moment.

Effect of Axial Force on Moment-Curvature Curve

During the response of a structure to static or dynamic loading, there
can be continual adjustments in the level of axial force in the vertical
members. Thus there should be smooth shifts between the moment—curvature
curves corresponding to these various axial forces. These shifts reflect
either a hardening or a softening of the member due to an increase or
decrease in the axial force. The current section stiffness , EIi, of the
moment-curvature curve in which the effect of axial force on the M=9¢ curve
is taken into account, 1is developed by introducing appropriate shifts or
movements between the series of M-9 curves for the different constant axial
forces.

The bending moment is assumed to be a function of both curvature and
axial force, while the axial force is assumed to be a linear function of
only the average axial strain.

m = M(¢,n) 1)

The incremental form of moment can be expressed by differentiating this
function:

Am:(%+g—:2—$)a¢=ui*m ©))

This current section stiffness , E%., contains two terms. The first
term 1is the slope of the M-¢ curve under a constant axial force. While the
second term represents the effect of a change in the axial force on the
slope of M~¢ curve, Fig. 2. The yield moment of a section, corresponding to
the current axial force, is determined from the axial force-moment
interaction diagram for each loading increment. This yield moment is used
in calculating both the section stiffness and the inelastic length at each
end of the element. It interesting to note that the same procedure used to
consider fluctuations of axial force in M-¢ curve can be applied for the end
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momen;-end rotation relationship. Thus, the stiffness of the nonlinear
rotational spring at each end of the element as well as the elastic element
stif?ness for one-component wmodel can be modified in the same way to
consider the effect of changing axial force.

To examine this procedure, a small-scale cantilever column element
(Ref. 3? is considered. In this test, a cantilever column was subjected to
Fhe cycllc lateral load, V. The axial force in the columm, N, was changed
in direct proportional to the lateral load, ( AN / AV = 4 ). Experimental
tip load-deflection curves appear in Fig. 3. Also shown in this figure are
the ?omputed results obtained by using the extended one-component model, the
multiple spring model, and the new model. It is seen that the agreement
between the analysis and experimental curves is quite good.

COMPUTED RESULTS

Models used for verification analysis are depicted in Figs. 4, and 5.
The line elements representing beams and walls are connected by rigid links.
Beams are idealized as an elastic line element with inelastic rotational
springs located at members ends, one-component model (Ref. 4). The proposed
model is used for the walls. A simplified Takeda type hysteresis model
(Ref. 5) with bilinear primary M-¢ curve is adapted in the wall model to
represent the M—¢ relations of critical section for walls. For coupling
beams, the Takeda hysteresis rules are modified to include pinch action and
strength decay which were observed to have a significant effect on the
behavior of a coupled shear wall, (Refs. 6, 7).

The 1inelastic structural response is evaluated by numerically
integrating the equation of motion using the Newmark Beta method based omn a
linear acceleration (Beta=1/6). The damping matrix is assumed to be
proportional to the stiffness matrix with a damping factor of 2 Z for the
first mode shape. The damping matrix is updated every step based on a
variable first frequency but comstant first mode shape assumption from the
current structural stiffness matrix.

The first structure is the 6-Story coupled shear wall which was tested
by Lybas (Ref. 8). In the analytical study, the structure is reduced to a
three story system to prevent possible numerical error causes by the lack of
mass at the odd stories. Because the overall structural stiffness is
dominated by the walls, the 6-Story structure is reduced to the 3-Story by
lumping of the beams at every other level without changing the wall section
stiffness. Fig. 6 shows a comparison of the 6-Story and the "Reduced" model
with test results under cyclic static loading. The effect of the changing
axial force in wall stiffness is considered only in the reduced model
Case-1. Moment distribution patterns in the walls when the base shear
equals +1.32 Kips, and when it is -1.31 Kips are shown in Fig. 7. The
concentration of flexural moment on the compression wall at the base is
clearly observed in this figure. These results indicate that maximum forces
in the walls can be affected significantly by axial force-flexural
interaction. The analysis which ignored the effect of axial force in
flexural strength and stiffness underestimates maXimum shear and moment at
the base by as much as 50 %. However, the average of the base moments of
the two walls in Case-l at any step is roughly equal to the base moment of
the wall in Case-2.
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Comparison of computed responses (using "Reduced" model) and test
result time histories show good agreement as indicated in Fig. 8. The
distribution of the base shear between two walls is clearly observed in the
base shear of left wall time history. During the first and second response
peaks at 0.70 Sec. and 1.2 Sec., the left wall which 1is subjected to a
tensile force does not resist as much shear at the base as the right wall.
The effect of the individual walls can be seen in Fig. 9. It should be
noted that yielding of the tension wall at the base does not mean that the
structural system loses it resistance to further load since the compression
wall is still capable of carrying additional loads with increased section
stiffness due to the large value of comprssion force.

The second structure is the 10-Story coupled shear wall which was
tested by Aristizabal-Ochoa (Ref. 9) and also studied analytically
(Refs. 6, 7) using two different column elements. The test results and the
computed results using the proposed model are compared in Fig. 10, where the
basic responses appear in good agreement.

CONCLUSIONS

1---The accuracy of the model is demonstrated by the analyses of a one
column element and by two coupled shear wall systems. The comparison
between experimental and analytical results shows very good agreement,
leading to the conclusion that the model is very effective in predicting the
nonlinear behavior of R/C column frame members.

2---Fluctuations of axial forces in the coupled shear wall plays a
major role in maximum forces in the individual walls. The analysis which
ignored the effect of axial force in flexural strength and stiffness
underestimates maximum shear and moment at the base of the walls.
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