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SUMMARY

This paper presents a simple method to estimate the statistical param—
eters of the work done by the seismic load acting on a structure, namely the
energy input, from the stochastic model parameters of the ground acceleration.
The method is based on a frequency-domain relationship between the energy
input and the Fourier square amplitude spectrum of the ground acceleration.

First the mean and the variance formulas for the linear SDOF system under
classical artificial earthquakes are obtained, and then it is shown they are
also applicable to the elastoplastic SDOF system using a simple equivalent-
linearization technique.

INTRODUCTION

It is not ecconomical that buildings are designed to resist elastically
the strongest-type earthquake, which may or may not be encountered in their
life time. 1In such cases structural engineers can not help expecting the
energy dissipation capacity of the building in inelastic range.

Consider a SDOF system, the dynamic behavior of which is governed by

mE + ex + Q(x,x,t) = -my (1)

mass t : time from the rest
relative displacement » : time derivative

: ground acceleration Q : restoring force

: damping coefficient

where

m
X
y
c

In this paper the work done by the effective excitation term -my is
regarded as the energy input exerted by the earthquake. A typical time history
of the energy input and its components are shown in Fig.l. The cumulative
plastic strain energy Ep and the energy dissipation due to viscous damping Eh
are both monotonically increasing quantities, and the energy input Ey as the
load effect can be represented at its final state: . .

Er = -mf y(D)x(t)dt  (2)
-0

Structural engineers should provide the building with sufficient strength
and deformability, so that it can dissipate the above quantity Ey exerted by
the design earthquake with mno significant damage. This type of emnergy-based
limit state design was classicaly initiated by Housner (Ref.l), and applied to
the design of steel structures by Kato and Akiyama (Ref.2), both in a deter-
ministic approach. There are still much difficulties to construct an appro-
priate stochastic model of excitations and structural capacities, but it is
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at least the order of reliability in the energy-based
limit state, as shown in Fig.2. For this purpose.th%s paper investigate a
practical method to estimate the fundamental statlst}cal'parameters of the
energy input under a certain stochastic model of excitatioms.

important to estimate

FREQUENCY~DOMAIN EXPRESSION OF ENERGY INPUT

Mosts of the properties of the design earthquake are of?en descri?ed in
frequency-domain. Corresponding to this, the frequencyjdomaln expr§551?n of.
the enmergy input is comvienient in the following analysis, ané studied in this
paragraph. The Fourier's identity used herein has the following form:

K@) = [=()e %, x(e) = (1/2m [xwedtan  (3)

el

where w : circular frequency j ¢ dimaginary unit

In this paper the above relationship is simply expressed by x(t) > X(w).
The Pranscherel's theorem, known as the power theorem, is expressed by
fmxl(t)xz*(t)dt = (1/27) wal(w)Xg*(w)dw (4)

—00 -0

Xl(t) > Xl(m) s Xz(t) e Xz(w)
Z*% : conjugate of the complex number or function Z

where

Substituting x(t) and ¥(t) in eq.(2) into eq.(4) leads to
Er = -m(1/2m) [TR()¥*(@)dw (5

—C0

where x(t) « X(w) , ) > ¥(w)

Introducing the concepts of the system function, or the complex frequency
response function H(w), and considering x(t) and y(t) are real functiomns,

eq. (5) results in Bl = me(w)Y(w)Y*(w)dw 6

-0

after introducing W(w) = -m-Reall[H(w)]/2n  (7)

where Real[Z] : real part of the complex number or function Z
H(w) : complex frequency response function by which
X(w) can be obtained from ¥(w)

The function W(w) plays a roll as a gate for the original energy compo-
nents which are expressed by the Fourier square amplitude spectrum, or the
energy spectrum, of the ground acceleration. In this sense the function W(w)
is named in this paper as the energy admittance of the structural system.
The energy admittance of the linear vibratiomal system is time-invariant and
depends only on the parameters of the vibrational system. The energy admit-
tance of the elastic SDOF system with viscous damping is given by

Ww) = mhwow?

[ (we-wo?) +4h%yow?] (8)
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where wo : mnatural circular frequency
h : damping constant

The properties of the energy admittance were investigated by Takizawa
(Ref.3) and by Lyon (Ref.4). The important property about the area of the
energy admittance is

IMW(w)dw =m/2 (9)

-0

The configuration of the frequency-domain analysis of the energy input is
schematically illustrated in Fig.3.

STATISTICAL PARAMETERS OF ENERGY INPUT TO LINEAR SDOF SYSTEM

The most popular non-stationary stochastic model of the ground accelera-
tion is the filtered white noize type shown in Fig.4. 1In this classical
procedure of generating artificial earthquakes, the simulated sample function
of Gaussian white noize is first modified by the deterministic shape function
a(t), and then the filtering is carried out using the deterministic filter,
the Fourier transformation of which is denoted by F(w). In this paragraph
the mean and the variance formulas of the energy input to the elastic SDOF
system with viscous damping are obtained under the above type of stochastic
model of the ground acceleration.

MEAN

The operation of mathematical expectation, denoted by E[ ], is applied to
the both sides of eq.(6), and we obtain
E[E7] = [ WE[¥()¥*(w)]de  (10)
-0

The expected Fourier square amplitude of the above type of stochastic
excitation model is given by  (see Appendix 1)

E[¥ (0)¥*(0)] = 27SoF (w)F*(w) [ [a(t)]2dt  (11)

-0

where So : power spectral density of Gaussian white noize

Substituting eq.(ll) into eq.(10), we obtain
E[Er] = 21S0 [“[a(t)]12dt- ["W(w)F(w)F*(w)dw  (12)

The integral f W(w)F(w)F*(w)dw can be calculated systematically with
the availability of the Hurwitz's determinant. The expected energy input to
viscously damped SDOF linear system under three types of filter (Refs.5,6,7)
are shown on Table 1. When the band-width of the energy admittance is narrow
enough and the function F(w)F*(w) is slowly varing, the following approxima-
tion is admissible:

E[E7] = mmSoF (wo)F* (wo) [~ [a(t)1?dt  (13)

—0

VARIANCE
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The operation of variance, denoted by V[ ], is applied to the both sides

f eq.(6), and obtain ® poo .
of eq.(6), and we VIET] = [7fW ()W (w2) CVigs (wy swp)de dwy  (14)

after introducing .. .
OV (ug,up) = E[¥ () ¥% (0¥ (W) T (w2) ] = E[¥ () ¥* () JEIY () ¥* (w2) ] (15)
As for the stochastic model shown in Fig.4, CViyx(wji,wp) is given by
CVsvs (Wy,009) = 42 802F (wy ) F* (w1) F (w2 ) F* (w2) (16)
Fix (Wy,02 [y (wibug) Ag* (watwg) + Ap (w1-wp)Ag* (w1-12)]

(see Appendix 2)
where [a(t)]2 «— Ay (w)

Substituting eq.(16) into eq.(l4), and considering W(w) is an even func-
tion of w, leads to

V[E7] = 812802 wa(w)Az(w)Az*(w)dw an

-—C0

after introducing U(w) = j“w(wl)w(wl+w)p(wl)F(wl+m)F*(wl)F*(wl+w)dw1 (18)

-—C0

It is possible to calculate eq.(l7) directly, but the results have
generally very complicated forms. Then we use the narrow-band approximation
similar to eq.(13), and the function U(w) is approximated by

[F(wo)F*(mo)]szhmo[(3“4h2)w2 - byo? 1 )
U(w) ==

4 m(1-h?) (bwoZ-w2) +16h%u0 262 T GhZuoZ+ KZJ

Using the above approximation, egs.(13), and (17), the coefficient of
variation, denoted by c.o0.v.[ ], of the enrgy input is expressed by

_ 2hwo [ (3-4h?)w? - 4uo? 1 )
c.0.v.[Eq] ’\/w(l-hz)_;f, [(4w02—m2)2+16h2 77 tiTneTagT A2 WAk (w)dw

wWo“w
/ [Pla(e) 124t (20)

The above formula gives an exact solution in the case of no filter, that
is, F(w)F*(w)=1. As for two types of shape function (Refs.7 and 8), eq.(20)
was estimated and shown on Table 2.

EXAMPLE 1

Using the type A filter (see Fig.5) and the type I shape function (see
Fig.6), the Monte Carlo simulation was carried out with 400 samples per each
cases. The results are compared with the prediction by eqs.(12) and (20),
as shown in Fig.7. The parameters used in the simulation were as follows:

Type A filter

tuwug =5 (sec-1) hg = 0.3
Type I shape function : a; = 2/3/3 (sec—1) c =1/3 (sec~1)
that is, [“[a(t)]2dt = 1 (sec)
Vibrational system D wo=kqg T = 1,2,...,10 (sec1)
h =0.02 and 0.2
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Fig.7 Example 1 Energy‘Input to Viscously Damped Linear SDOF System
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Fig.6 Shape Function to Elastoplastic SDOF Systen
APPLICATION TO HYSTERETIC SDOF SYSTEM

Various types of the equivalent linearization technique for hysteretic
vibrational systems were investigated by many researchers. Any techniques
proposed can make the formulas described in the preceding paragraph appli-
cable to hysteretic systems, so long as the first and the second moments are
dealt with. 1In this paper no attempts are made to discuss which techniques
are preferrable, and the power-balance type techniques (Refs. 9 and 10) are
chosen only because the energy concepts are used.

EQUIVALENT LINEARIZATION PROCEDURE

The equivalent linearization procedure for the elastoplastic SDOF system
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with viscous damping was carried out iteratively in the following way:

1. The initial values of the equivalent natural circular frequency Weq and
the equivalent damping constant hgq were set to wo and h, respectively.
2. The expected energy input exerted during the major portion of the earth-

quakes, from the time ti1 to t,, was calculated by eq.(1l2) with the last
values of weq and heq as follows:

E(Ereye,] = E(Efl- [la()]2dc / [Tla(0)]%ae  (2D)

t1 e
3. The following assumptions were made in order to improve the values, wg
and heq . Assumed that the component of the frequency weq is very dominant

in the response, the expected energy input per unit cycle ey is approxi-
mated by
ey = E[Eltltz] . (Zﬂ/weq)/(tz—tl) (22)
The energy-balance equation per unit cycle is expressed by
e] = ep + ep = eeq (23)

where e7, ep, and ep denote expected values of Er, Ep, and Ep per unit
cycle, respectively, and e, denotes the energy dissipation due to equiva-
lent damping per unit cycle. Assumed that the response is harmonic-like,
ep, ey, and eqq are related to the local amplitude PSY shown in Fig.8 as:

ep=20y8y (p-2), ep=(x/2)hp2Qydy (weq/wo), eeq=(7/2heqp?Qyly  (24)
Using the secant modulus method weq = wov2/p  (25)

The improved values of weq and heq can be obtained by solving egs.(22)
to (25).
4, Using the improved parameters the procedure 2 is consecutively repeated
until the value of ey is converged. After the convergence, E[E7] and
c.0.v.[ET] were calculated by eqs.(12) and (20) with the final parameters.

EXAMPLE 2

The same filter and the same shape function as Example 1 were used in the
simulation of this paragraph. The original damping constant h is set to 0.02
and yield emnergy Qydy is set to the same value, mSo-(2.0 sec), in each elasto-
plastic system. The prediction made by the above procedure and the simulated
results are compared in Fig.9.

CONCLUDING REMARKS

1. . The Fourier square amplitude spectrum of the ground acceleration can be
transformed by the energy admittance into the energy input to the structure
subjected to the earthquake.

2. The exact formula to estimate the mean, and an approximate formula to
estimate the coefficient of variation, of the energy input to viscously
damped linear system under classical stochastic models of the ground
acceleration were obtained.

3. It is found that the above formulas are also applicable to the elasto-
plastic system using an appropriate equivalent linearization technique.
This provides a practical means to evaluate the reliability of hysteretic
structures. :
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APPENDIX 1 Expectaion of ¥(w)¥*(w)

(¥ () ¥ () ]=F () F* () f fa (£, )a (t2) eJ0 (F17E2)E[n(t, )n(tp) Jde dey (A1)
Considering n(t) is white noize, E[n(t)n(t+r) ]=2mS08 (T) o .FAZ)
where So : constant power spectral demsity §(t) : unit impulse function

Substituting (A2) into (Al) leads to eq.(1ll) in the text.

APPENDIX 2 Covariance of ¥(w)¥*(w)

CPp (w1, 02)=F (01)F* (w1 ) F (wp)F* (02) [ [ ffa(ty)alty)a(t a(ty) eJwa(tai=ta)
»ejw2 (t3-E4)E[n(t,)n(ty)n(t 3)n(ty) Jdt dtpdt gty
“E[Y(03) % (0g) TELY (p) ¥ ()] (43)
Considering n(t) is Gaussian,
Eln(ty)n(t2)n(t dnlty) 1=E[n(ty)n(t2) JE[n(t3)n(ts) I+E[n(t)n(t 3) JE[n(t2)n(ty)]
+E[n(t)n(ts) JE[n(t3)n(t2)] (A4)
Substituting (A4), (A2), and eq.(1l) into (A3) leads to eq.(l6) in the text.
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