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SUMMARY

Knowing the combined lateral and torsional response of a light-frame
timber structure is important for seismic design. A three-dimensional
model is developed to determine the coupled lateral and torsional natural
frequencies and mode shapes for low-rise timber buildings with shear wall and
diaphragm construction. Results are presented for a two-story building common
to residential construction in the United States.

INTRODUCTION

Structural engineering research for seismic building response and design
has centered on lateral motion. Torsional response is just beginning to be
investigated. Although a range of values of lateral natural frequency data is
known for low-rise timber buildings (Refs. 4,6,11), no corresponding data are
available for torsional or combined lateral-torsional motion. Yet, torsiomnal
racking was observed (Ref. 2) as the greatest deficiency of light-frame
buildings during the 1971 San Fernando earthquake. Obviously, analysis pro-
cedures that account for torsional behavior are needed to properly design
light-frame buildings.

This study presents a three-dimensional analytical model to determine the
coupled lateral and torsional frequencies and mode shapes of low-rise timber
buildings. The model, based on linear relationships, is suggested as a middle
course between very sophisticated structural models and oversimplified lumped
mass models. It corresponds to the accuracy and reliability of available
experimental data on timber shear walls while at the same time providing
reliable and realistic results.

STRUCTURAL MODEL

Floor and roof diaphragms and vertical shear (racking) walls constitute
the lateral load resisting elements of much of light-frame timber structures.
The floor and roof diaphragms are assumed rigid in their own plane. This
assumption is commonly made in the analysis of high-rise buildings; Shepherd
and Donald (Ref. 7) indicated the assumption is also valid for low-rise
structures.
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The vertical shear walls generally consist of a sheathing material
nailed to a framing system. Itani et al. (Ref. 3) presented a procedure to
model each sheet of sheathing by a pair of diagonal springs. The spring stiff-
ness depends on the stiffness of the nailed connection of the sheathing to the
framing. The stiffness of the nailed comnection is nearly linear at small
deformation and becomes nonlinear at larger deformation. Lateral stiffness
and strength of the wall is more dependent on number of nails and nail spacing
than on wall height (Refs. 9,10). For split-level buildings having half-height
walls, the height reduction increases stiffness while the use of fewer nails
offsets this increase.

The structural model of a two-story building is given in Fig. 1. The
stiffness per unit length of walls on the same floor level is assumed
identical, but on different levels it can have different values. The effec-
tive length of a wall, used to determine wall stiffness, is assumed to be the
total length minus the length of openings.

The foundation is assumed rigid and motionless. The effects of the joints
between the foundation and first floor diaphragm are simulated by dummy shear
walls. The floors are rigid diaphragms interconnected by pin-ended vertical
rigid bars. Walls are connected at nodes at each floor level only.

The general arrangement and nomenclature for the ith floor are given in
Fig. 2 for the multi-story building.

Superscripts M or C define the mass center, M, or the stiffness center, C.
The mass center, Mi’ is the center of gravity of the masses lumped at the
floor, i. The stiffness center, Ci, is the point about which the floor, i,
rotates under the action of a horizontal couple. The wall lengths in the x

and y directions are denoted by a and b, respectively.

Stiffness Matrix

To construct the stiffness matrix of the structure, unit horizontal
relative displacements between the floors '"i" and "i+1" and "i" and "i-1" are
applied. The forces and moments corresponding to these horizontal displace-
ments give the elements of the lateral stiffness matrix.

The expressions for displacements in the x-direction are:

[+l _
Kex = Fing zai+1,m

_ i+1
(ui - ui+l) =1 ny (1)

1}
[«

Pt _
{Kxe = K zai+1,m Yi+1,m

Similar expressions were developed (Ref. 5) for displacement u between
the i and (i-1) floors and displacements v in the y-direction, and for
rotation, 6, about the z-axis. The stiffness coefficients, K, are expressed
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in terms of the stiffness per unit length of wall, k; the wall lengths, a, b,
parallel to the X and Y axes; and the wall coordinates, x, vy.
The stiffness coefficients derived above can be assembled in the sub-

matrices [Ki,i~1]’ [Ki,i]’ and [Ki,i+1] for the floor "i". These submatrices
correspond to the displacement vectors [u., . v, 6. .1, [u. v. 8.], and

i-1 "i-1 Ti-17” i1 i
[ui+1 Vit 8i+1]. The matrix [Ki,i-ll is given below. The other matrices are
given in Ref. 5.

— I
i i
Kxx 0 -kxe
- i i N
(K, ;] 0 Ky, Ky (2)
i i
Ko Ko Koo

The submatrices for each floor can then be assembled into the stiffness
matrix for the entire structure.

The stiffness matrix must be modified for a split-level building since
this type of building consists of two parts each having floor diaphragms at
different levels. If the two parts are assumed disconnected, their individual
stiffness matrices [Kq] and [KB] can be determined as discussed for the two-

story building. Thus, the stiffness matrix of the entire uncoupled structure,

[KO], has the symbolic form: - -
KA | 0
K = - - L - = (3)
° i
0 ‘ KB

The interaction between the two parts is expressed by a connection matrix
[Kc]' If the lateral stiffness of the interconnecting walls is denoted by k

’

and the distance from these walls to the y axis is denoted by X, then the
stiffness matrix of the entire coupled structure is:

(K] = [K ] + [K_] (%)
where _
—
R [ &
2K [ -k -K
k1={ _ K kK (5)
K K 2K
-K -Kl 2K




and the submatrix

0

kX (6)
kX

Mass Matrix

The masses are lumped at each floor level by assuming they are uniformly
distributed over the entire floor plan. A typical floor plan (Fig. 3) is
subdivided into rectangular parts with dimensions s x r; thus Sik and L

indicate sides of the rectangular part k at floor level i. Similarly, the
mass center of the rectangular part k is denoted Mik'

Using these notations for the floor "i," the area Ai’ the coordinates
of the mass center x? and y?, and the moment of inertia about the point O,

Joi can be obtained as below:

Ai = Zrik ik (7
k
r s XM
ik “ik “ik
A=k (8a)
i A,
1
M
2 Sixk ik
M_k— = (8b)
¥i A,
1
_ 1,2 2 M .2 M .2
Joi =13 f; Tik Sik 12Tk T oSid T Gg)T T Orgy) ‘, (9
Thus, the mass matrix of floor "i" has the form
M
A m, 0 yiAimi
M.]1 = 0 A.m <A m (10)
i ii itii

The mass matrix of the entire structure is assembled from each of the floor
mass matrices.
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For split-level buildings, the mass of the interconnecting walls can be
neglected because they are very small compared to that of the entire building.
Then there is no coupling between the mass matrices of the two independent
parts, and the mass matrix of the entire coupled structure is the sum of that
for the two independent parts.

Modal Analysis

Based on the computer model developed herein, a modal analysis can be
conducted using the classical dynamic equilibrium equations. If damping is
neglected and only the free vibration response is required, these equations
reduce to the standard eigenvalue problem to determine mode shapes and natural
frequencies. We used the modal analysis to analyze a two-story building.

Model Building

A two story house was selected as an example. It corresponds to
a building studied by the Applied Technology Council (Ref. 1). The floor
plans of the two-story are shown in Fig. 4. The structural model in Fig. 1
corresponds to this building.

Wall Stiffness

The walls for each building are plywood (exterior) and gypsum wallboard
(interior) sheathed, typical in light-frame timber construction. The load-
horizontal displacement curve is nonlinear for this type of construction.
Thus, a linear sensitivity approach is used in which the initial stiffness
(kmax) and secant stiffness (kmin) depend on sheathing materials, framing

species and grade, and nail size and spacing. Approximations are made for

k and k . by relating wall strength and stiffness to lateral nail strength
max min

and stiffness. A previous study (Ref. 10) related wall panel racking strength,
R, to lateral nail strength of the cormer nail, r. This work was extended
(Ref. 5) to relate wall panel stiffness, k, to the lateral nail stiffness of
the corner nail. The total lateral stiffness of a wall is the summation of
the individual panel stiffnesses.

The walls are assumed to be constructed with 3/8-inch plywood exterior
sheathing with 6d nails spaced at 6-inch intervals along the perimeter and
12 inches along the interior framing and 1/2-inch gypsum wallboard with
1-1/2-inch ring shank nails spaced at 8-inch intervals. Using minimum and
maximum lateral nail stiffness from Ref. (8) and the wall panel stiffness
relationship from Ref. (5) results in kmin = 10,800 1b/ft per foot of shear

wall and kmax = 54,000 1b/ft per foot of shear wall.
Results

The lowest natural frequency for the two-story building is 1.79 Hz and
4.0 Hz corresponding to kmin and kmax' Mode shapes corresponding to the

minimum stiffness values, for the first three frequencies, are given in Fig. 5.
These responses are based on assuming the stiffness of the walls per unit
length is the same on each level and for the base connection.

667



A split-level building was analyzed in two different forms in a companion
report (Ref. 5). First, it was assumed that the two parts of the house are
independent. In the second analysis the connections between the two parts
were taken into consideration, and the whole building was analyzed as one

single structure.

SUMMARY AND CONCLUSIONS

Timber structures are susceptible to lateral-torsional displacement
damage during earthquakes. Particularly vulnerable are split-level houses and
two-story buildings with large openings on the first floor. This study
describes a model which can be used with classical modal analysis to yield
natural frequencies and mode shapes for coupled lateral-torsional motion.

The dynamic response of a two-story building has been determined numeri-
cally. The building has nonsymmetrical mass and stiffness centers resulting
in coupled lateral-torsional vibrations.

The structural model and analysis method is suitable for the dynamic
modal analysis of single- and multi-story light-frame timber buildings of
shear wall and diaphragm construction. Since the degree of freedom of the
model is low, the analysis does not require considerable calculation and com-
puter time; however, the results obtained are realistic (compared to observed
natural frequencies) and give reliable information about the dynamic response.
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Figure 1.--Structural model of a two-story shear-wall building. Lowest
is a "dummy'" wall representing foundation-wall connection.
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Figure 2.--General arrangement and nomenclature for a two-story building.

! & FLoor
| ~ i oo

RECTANGULAR
Aarr (5

-
Y

ez X
M151972

Figure 3. —-General arrangement and nomenclature for a typical floor.
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