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SUMMARY

The seismic fragility of reinforced concrete (r.c.) frames is
evaluated as the conditional frequency of failure at a given value of the
seismic intensity. The more accurate mechanical model compatible with the
acceptable computational effort should be adopted in estimating these
structural fragilities. For this purpose, an idealization of the frame
taking into account also the finite size of the plastic zones is developed.
The constitutive law to be introduced in the calculations is the cross-
section moment-curvature relationship. The approach is implemented for a
general purpose computer code: the results obtained for a four—storey
three-span r.c. frame are compared with the fragilities estimated by using
a model which concentrates the inelastic deformations in potential plastic-
hinges.

INTRODUCTION

Previous papers by the authors and associates (Refs. 1 to 4) have
treated the problem of determining the seismic reliability of reinforced
concrete frames allowing for the uncertainty of both ground motion details
and mechanical and geometrical characteristics of the structure. In the
same framework, the authors have separated the contribution to the system
fragility (Refs. 5 to 7) of different sources of uncertainty. In particular,
the influence of the uncertainty on the cross-section failure criterion has
been studied with special attention (Refs. 1 and 3). The local failure
criterion has been defined in terms of two damage indicators: a ductility
factor that penalizes large displacements, and a parameter expressing
inelastic-energy dissipation which penalizes inelastic cycles also at low
displacement levels. The uncertain limit value of a function of these
indicators was derived from statistical analysis of experimental data
(Refs. 8 and 3).

Research still in progress has led to the formulation of a sophistica-
ted procedure for the assessment of the seismic reliability of complicated
structural systems (Ref. 9). This procedure,founded on the use of
experimental design techmiques, is very accurate in the evaluation of the
statistics and in the estimations of the probabilistic properties of the
fragility parameters; an analogous degree of sophistication in the
mechanical idealization of the structure, however, should also be
adopted. For this purpose improvements in the computational tools have
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been recently pursued,at least with reference to the non-linear dynamic
analysis of r.c. frames. The axial force-bending moment interaction has
been considered (Refs. 10, 11 and 4) and the dynamic analysis has been
made able to proceed after one or more elements have failed (Refs. 12 and

13).

All these improvements have been introduced in computer codes which
discretize the frame in perfectly—elastic members, while inelastic
deformations concentrate at their ends (potential plastic hinges). The
effect of the finite size of the plastic regionswas therefore neglected.
A different approach requiring a slightly increased computational effort
has been developed in Refs. 14 to 16. It takes into account the spread of
the plastic zones by subdividing each element 1in three parts of finite
size: an elastic central region and two inelastic zones of finite size
at the ends.

This model, allowing for the diffusion of the plasticity along the
element, is introduced here in the calculation of seismic fragilities in
order to investigate the approximation reached by idealizations which
concentrate inelastic deformations. For this purpose the damage indicators
are derived from the calculated response and the probabilistic failure
criterion of Ref. 3 is used to establish the structural fragility.
Comparisons are developed for the three-span four-storey frame which has
been already analysed in Ref. 3 with the inelastic deformations concentra-
ted at the member ends.

MECHANICAL MODELS

The mechanical idealization of a plane frame usually adopted in non-
linear dynamic analysis regards the frame as the assemblage of perfectly
elastic elements with a hinge at each of its ends. The two hinges at the
two ends of the element represent the flexural inelastic behaviour of the
member. For reinforced concrete frames, the hysteretic moment-rotation
constitutive law of these hinges is assumed to follow the modified Takeda
model (Fig. 1). The bilinear primary curve of Fig. 1 is completely defined
by the yielding moment M_ (to be computed) and the slope of the second
branch (to be derived frdm experimental data). The flexural hinges, in fact,
are initially (first branch) infinitely stiff, so that they do mot affect
the behaviour of a member before yielding. Once they yield, the flexibili-
ties of the plastic hinges are added to the rotation flexibility matrix
of the elastic member (Ref. 18)
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Ki and K. being the stiffnesses of the flexural hinges (i denoting the
first end of the element and j the second end). Note that in this way the
stiffness matrix of an element is modified only when there is a change of
§tiffness in one of the two hinges, so that the global stiffness matrix
is not necessarily modified at each step.
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A different, more accurate model should be introduced if the finite
size of the plastic regions has to be taken into account. In this case one
considers a constant moment-curvature relationship along the element and
describes it by the hysteretic model of Fig. 1. The primary curve is here
completely defined by three parameters: the yielding moment M_, the first
slope (EJ)e and the second slope (EJ)Z' These quantities can b8 all
calculated from the elementary material properties of steel and concrete
(Refs.19 and 15). Any element of length 2 is then subdivided into three
regions (Refs. 15 and 16) in order to compute the tangent stiffness matrix
of a general frame member:

i) the inelastic region of length x; at node i, with average stiffness

(EJ).

ii) tgg.%nelstic region of length % at node j, with average stiffness

(EJ)s s
iii) the central region of length (£-x.-x.), having the initial elastic

stiffness (EJ)e. o

In this scheme, the flexibility coefficients are given by:
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where Q; = (EJ)e/(ﬁ)i and Qj = (EJ)e/(ﬁ)j.

The lengths x and the stiffness ratios Q of the plastic regions depend
on the current branch of the moment curvature diagram. In the elastic field
one has x, . = o, le =0 (k =i, j). For inelastic loading along the second
branch of {he primaty moment curvature diagram, the length of the plastic
region can be determined by:

e

% T VM, ©
1 J
where M_ is the yielding moment and is the current value of the bending

moment 3t the end k (k = i,j). Within the plastic region the stiffness
ratio is ka = (EJ)e/(EJ)z.

In Refs. 15 and 16 the unloading (EJ), and reloading (EJ)4 flexural
stiffnesses of the moment—curvature relatidonship are defined according to
the scheme of Fig. 2. During the unloading and the reloading, remains
the maximum plastic region length reached in any previous loading cycle,
while Qg, (unloading) and Qy, (reloading) can be given by the approximate
expressidons (Ref. 15):
_ €D,
Qk3 = (EJ)e/(EJ)3 =c (ﬁj‘)—; - ]-) +1 (048)
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_ (E1),
Qk4 = (EJ)e/(EJ)4 =c ('(E—J')'Z -1 +1 (04b)

¢ being an empirical constant coefficient. Values between 0.5 and 0.75 of ¢
have been found to give the most accurate results in Ref. 15.

The model of Eq. (01) has been introduced by Litton (Ref. 18) into the
general purpose non-linear analysis computer program DRAIN-2D (Ref. 20).
The model of Eq. (02) has been incorporated in the same computer code by
Roufaiel and Meyer (Ref. 17) and, independently, by the authors of this
paper. The computer routine written by the authors runs taking account of
the axial-force under static loads in the yielding moment determination and
in the P-A effect evaluation. However, the bending moment-axial force
interaction of Ref. 11 was also introduced as an option. The code can stop
when any element fails (brittle failure) or proceed the analysis until an
ultimate displacement is reached (progressive failure (Ref. 12)). Moreover,
some local effects in the moment-curvature relationship (as pinching or
strength degrading) are not taken explicitly into account, but they can be
easily incorporated. This numerical procedure requires a slightly increased
computational effort in comparison with the computer time spent by using
the plastic hinge model. The increase is justified by the need of updating
the stiffness matrix also at the end of the steps during which one or more
X, increase without changes in Qk'

SEISMIC RELIABILITY

Failure criterion

The damage analysis developed in Ref. 17 is founded on the introduction
of a flexural damage ratio as damage indicator. It is evaluated on the
moment—curvature diagram. The dynamic analysis of a frame following the
model of Eq. (02) works in terms of curvatures and therefore no additional
calculation is necessary for the estimation of the damage indicator.
However this flexural damage ratio appears to be very poor for seismic
reliability purposes, because it takes into account the effect of large
deformations, but not the effect of cycles at low displacement levels.

In Refs. 1 to 9, two quantities have been combined into a single
measure of section damage R(t) (R(t) being a function of the time t from
the beginning of the excitation). In particular in Ref. 3 the authors
considered the data-based damage measure:

0.38,2

R(t) = [(1.10@() %32 + (67,27 £0-36%

(em(t))0.4138)21% (05)

where D(t) is the dimensionless energy dissipated by inelastic rotation at
one end of the member and 6 (t) is the maximum inelastic rotation reached
in (0,t) at the same member end. The first indicator penalizes inelastic
cycles also at low displacement levels,while the second indicator penalizes
large displacements. In Eq. (05) £ is the dimensionless neutral axis depth
in the ultimate state. The value R(t) = R¥ at which failure occurs varies
randomly from hinge to hinge and has been found to be accurately described
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by a random variable with lognormal distribution, mean 12.l1 and variance
11.2.

Eq. (05) fits a larger quantity of experimental data than other damage
measures. In addition to the results of few laboratory tests of r.c.
specimens subject to cyclic loading (Ref. 8), in fact, a lot of laboratory
(Ref. 21) and theoretical (Ref. 22) results are available on the relation
between the ultimate rotation and appropriate physical quantities (as the
neutral axis depth &, the transversal reinforcement ratio and the shear
span ratio) for monotonic (non-cyclic) loading. Both these experimental
results have been combined in Ref. 3 in order to provide Eq. (05) and the
properties of the critical value RX.

The damage measure of Eq. (05), however, requires the evaluation of
the inelastic rotation of each member end at each time t in order to
calculate its maximum value 8 _(t) and to evaluate the dissipated energy
D(t). This task is very easy Tf one adopts the mechanical model of Eq. (Ol),
whereas additional computations are required at the end of the analysis
procedure founded on Eq. (02). Integration of the curvature along the
finite length of the plastic zone is the direct approach to the problem
but its use is discouraged by the drastic simplifications (Eq. (04))
introduced in the calculation of the member flexibility matrix. Therefore,
a simplified procedure is formulated in the sequel in order to estimatre the
inelastic rotations of the member ends.

i) At time t the stiffness tangent matrix of the element is obtained as
the inverse of the flexibility matrix f (Eq. (02)) and the global
stiffness matrix of the frame is obtained by assembling the single
member matrices.

ii) By the classical formulae of the numerical integration, the solution
of the equation of motion is obtained at the time (t+At). From this
solution the increments A8T = {48,,46.} of the rotations at the ends
of the h-th element are easily defived from the node displacements.

iii) An increment of bending moment at the member ends

&My -1
S PR (08)
is associated with the rotations A8. In a perfectly elastic alements
these moments would be associated with an elastic rscation

A8 = £ AM (07)
—r e ——

f being the member flexibility matrix calculated for x = 0 and Q = 1,
iv) The inelastic rotation increment is finally defined as

AB = A8 - A8 (08)
—-——p_—-—e

As f may change during the single time step, different alternative
procedures are possible. They will be reported in a separate paper, but the
first numerical experiments show a coincidence of the results in terms of
damage indicators. It is worth noting, however, that A8_ is not the
inelastic rotation in the usual sense. In fact, Aepk cafl also be different
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from zero at ends where plasticity has not developed, A6k being the effect
of the plastic zone spread at the other end.

Fragility Curves

Consider a frame excited by a given loading history. The dynamic
analysis of the frame provides the displacements at each integration step.
Then, Eq. (08) gives the value of the inelastic deformation at the member
ends and the damage measure R(t) can be determined by Eq. (05) at each step.

Let the duration of the time loading history be T and let the load
amplification factor be Y. As Y is increased, R(T) increases: the carrying
capacity of the structure is the minimum value YR of Y for which

Y = YR = R(T) = R® at least in one element end (09)

If the structure characteristics, the time loading history and the
member resistances R¥ are assumed to be random, also Y, is a random
variable. According to the discussion of Ref. 1, the fragility curve of the
structure can be regarded, under sufficiently wide hypotheses, as the
cumulative distribution function of Y,. This distribution function can be
estimated by simulating a sample of mechanical problems, whose analysis
provide a sample of Y,. The cumulative frequency of this sample gives an
approximation of the searched fragility. The results of a previous hazard
analysis and the fragility curve can then be combined in the well-known
convolution integral of the classical reliability theory in order to
estimate the mean failure rate of the structure, i.e. its seismic
reliability if the stochastic excitation is a ground motion.

A NUMERICAL EXAMPLE

In order to have the possibility of comparing the fragility curves
evaluated by the mechanical model summarized in Eq. (02) with the fragilities
calculated with concentrated inelastic rotations, the numerical example has
been developed for the reinforced concrete frame already used in previous
studies (Refs. 8 and 3) and designed by Lai in Ref. (23).

Three sets of random parameters are considered:
i) the random parameters necessary to describe the motion(durationjcentral
frequency and damping of the Kanai-Tajimi spectral density function);
ii) the vector of equicorrelated random parameters of resistance R¥ at the
critical sections;
iii) the random parameters which define the behaviour of the mechanical
system (mass, stiffness, damping ratio, hardening and the vector of
yielding moments).

The coefficient ¢ in Eq. (04) has been assumed to be 0.6.

A sample of 20 values of Y, (the minimum value of the earthquake
intensity which causes the failure of the structure) has been obtained
corresponding to 20 randomly simulated ground motions and sets of behaviour
parameters. For each simulated set of parameters and for the corresponding
simulated ground motion, the structure has been analysed using the DRAIN-
2D algorithm with finite size plastic zonesat the end sections of otherwise
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linear elastic members. At each of the analysis step the program calculates
the quantity R(t) of Eq. (05) for each critical section. If R(t) is greater
than the simulated value of R¥, the element fails and hence the frame fails.
In order to accurately estimate Y,, it has been necessary in each of the 20
simulation cases to perform several calculations with different values of Y.

According to Ref. 1 and 3, an average spectral pseudovelocity has been
used as seismic intensity measure:

Inw
_ 1 s
=1y J S, (@B )d(1nw) (10)
w lnms—lnyw

where S_(w_,B ) is the pseudovelocity response spectrum ordinate for (w_,B ;
w is the PirSt natural frequency of the elastic system, B 1is the associa=
ted damping ratio.The averaging interval parameter Yy has been taken equal

to 2.

The empirical distribution of Y, obtained by this simulation is shown
in Fig. 3, where it is compared with a lognormal fit. The points Y! obtained
in Ref. 3 with the inelastic deformations concentrated at the member ends
and the relevant lognormal fit_are also reported in Fig. 3. The abscissa is
the ratio Y JE[¥!], where E[Y'] is the sample average of Y!. The sample means
E[ ] ,the sample Coefficients of variation 3, and the empirical coefficients
of variation §" associated with the fits of Fig. 3 are:

N N AN
Bvg] = 91.700 en/s Sy = 0.333 &
E[v;] = 96.225 cu/s gy = 0.312 5§§

Figure 3 shows a substantial coincidence of the fragilities obtained
by using the procedures of Egs. (01l) or (02). For a single simulated
problem, the procedure taking into account the finite size of the plastic
zoneshas given results in terms of Y, generally lower than the values obtained
by the plastic hinge approach. In some few cases, however, Y_ has been
found greater than Y); a larger dissipation (i.e. higher values of the
damage indicators), in fact, is obtained for the beams and this influences
the damage accumulation in the column which are the failing elements. In
other cases these higher values of the damage indicators are common to beams
and columns and Yp < Y!. Regarding to the sample central values of the
g%stributions of Y , the mean value of Yy (Eq.(11)) is lower than
E[Yé] of about 5%, while a higher coefficient of variation has been found.

0.403

]
]
]

(1)
0.424

CONCLUSIONS

A procedure able to calculate the fragilities of reinforced concrete
frames without neglecting the spread of plastic zone has been formulated and
implemented for a general purpose program.

Comparison of the results obtained by this procedure and a plastic
hinge idealization do not give large discrepancies, even if the concentra-
tion of the inelastic deformation is proved to be slightly unconservative.
The main feature of the method is that the moment-curvature constitutive
law can be derived by elementary material data and geometric section pro-—
perties, whereas the moment-rotation relationship has to be derived from
experimental data which may not be available in some practical situations.
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