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SUMMARY

The effect of various stiffness parameters on nonlinear earthquake
response amplitude of single-degree-of-freedom systems is studied. When the
hysteresis model responds well in an inelastic range, the level of yield
resistance and the capacity of hysteresis energy dissipation are shown to be
the most important parameters of the system. If the two parameters are chosen
comparable, the response amplitudes and waveforms are not significantly
affected by the detail differences in the various hysteresis models.

INTRODUCTION

It was more than twenty years ago when the second World Conference on
Earthquake Engineering was held in Tokyo in 1960, where many research papers
reported the elasto-plastic response of simple systems using then-developing
digital computers, placing more emphasis on the development of numerical
procedures. Since numerical methods were made easily available to experimental
investigators in the late 1960's, many "realistic" hysteresis models have been
developed by the researchers, leading a maze of models, each claiming the best
fit to the observed curves, without understanding which hysteresis properties

might have significant influences on the earthquake response. This paper
studies the effect of different hysteresis and stiffness parameters on the
earthquake response. Hysteresis models used are limited to those which

simulate dominantly flexural behaviour of the reinforced concrete.
HYSTERESIS MODELS FOR REINFORCED CONCRETE

A typical load-deflection relation of the reinforced concrete is shown in
Fig.l (Ref.l), where the deformation was governed by flexure. The general
hysteretic characteristics can be summarized as follows: (a) Stiffness changed
with the flexural cracking of concrete and the tensile yielding of
longitudinal reinforcement; (b) When repeated at the same newly attained
maximum amplitude, the loading stiffness in the second cycle was noticeably
lower than that in the first cycle, although the resistances at the peak
displacement were alomst identical; (c) Average peak-to-peak stiffness
decreased with maximum displacement amplitude; and (d) The hysteretic
relations depended on a loading history. A hysteresis model must be able to
provide the stiffness and resistance under any displacement history.

Many hysteresis models have been developed in the past for dominantly
flexural behaviour of the reinforced concrete (Ref.2); notably (a) Ramberg-
Osgood model (Ref.3), (b) Clough (Degrading Stiffness) model (Ref.4), (c)
Degrading Trilinear model (Ref.5), (d) Takeda model (Ref.6), (e) (Degrading)
Bilinear model (Ref.7), and others. The primary curve, load-deformation curve
under monotonically increasing deformation, may be given by a "curve'"(Ramberg-
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Osgood model), a "bilinear" 1line (Clough and Bilinear models), or 2
"trilinear" line (Degrading Trilinear and Takeda models) with stiffness
changes at ‘"cracking" and "yielding" points. Some hysteresis models are
elaborate, including many hysteresis rules, while others are simple. Note
that the complicatedness of a model requires a large memory, but that it does
not necessarily lead to a longer computation time because a very limited
number of hysteresis rules are referred to at a given loading situation.

The Clough model is modified to include the degradation in unloading
stiffness Kr from the initial yield stiffness Ky with wmaximum displacement
amplitude Dm beyond the yield displacement Dy;

Kr = Ky x ABS( Dy / Dm ) 2 (1

where "a" is called the unloading stiffness degradation index (USD index), and
the value might wvary from 0.0 to 0.5 for the reinforced concrete. This
feature existed in the Takeda model.

STIFFNESS AND DAMPING PROPERTIES

The response of single-degree—of-freedom (SDF) systems is computed by a
computer program "SDF" to study the effect of different stiffness properties
and hysteresis models. The Newmark's design criteria (Ref.8) are adopted to
determine the yield resistance of SDF systems; 1i.e., the linear acceleration
response spectrum at a 5 percent of critical damping is divided either (a) by
an allowable ductility factor of 4.0 if the yield period, period corresponding
to secant stiffness at the yield point, is greater than 0.5 sec, or (b) by the
square root of (2x4-1=7) if the peviod less than 0.5 sec. The yield
displacement is determined from the yield resistance and stiffness; the post-
yield stiffness 1is assumed to be 10 percent of the yield stiffness. For a
trilinear primary curve, the uncracked stiffness is 2.0 times the yield
stiffness; and the cracking resistance one-third the yield resistance. The
parameters of the Ramberg-Osgood model are chosen so that the yield point and
the resistance at the allowable ductility are the same as the other models.

The viscous damping coefficient is assumed to vary proportional to the
instantaneous stiffness so that energy dissipation by damping should decrease

with increasing hysteretic energy dissipation. The stiffness proportional
damping was found more desirable in analytically reproducing the shake table
response of model structures (Ref.9). The damping factor of a system 1is

chosen to be 5 percent of the critical at the yield stiffness.
EFFECT OF STIFFNESS PARAMETERS
The effect of stiffness parameters (cracking and yield resistance levels,

initial and post-yielding stiffnesses, and USD index) of the Takeda model on
ductility demand, maximum calculated displacement divided by the vyield

displacement, of SDF systems is studied. Since the response of short-period
systems is sensitive to some parametric values, the response of systems with
yield periods of 0.14 and 1.13 sec are computed under the N2IE component of

Taft (1952) earthquake record.

EFFECT OF 1INITIAL STIFFNESS AND CRACKING RESISTANCE: The initial
stiffness of the reinforced concrete is approximately 1.5 to 4.0 times the



vield stiffness, and «cracking force level from 0.1 to 0.7 times the vield
resistance. The ductility demand is not affected by the variation in the
initial stiffness (Fig.2) and the cracking force level (Fig.3), as long as the
ductility demand 1is greater than 4.0. Note that the two parameters might
influence the maximum response amplitude if the ductility demand is less than
or around unity. The hysteretic energy dissipation capacity of a Degrading
Trilinear model is sensitive to the choice of a cracking point relative to the
yielding point, and the response is significantly affected by the parameters.

EFFECT OF YIELD RESISTANCE LEVEL: The level of yield resistance is one
major factor that influences the amplitude of maximum response. Figure 4
shows the variation of maximum response with yield resistance. With
increasing yield resistance, the ductility demand is significantly reduced,
especially for systems with short periods. Note that the value of yield
displacement increases proportional to the yield resistance. Consequently,
the maximum displacement amplitude does not decrease so much as the ductility
demand does.

EFFECT OF POST-YIELD STIFFNESS: The strain hardening after yielding
influences the hysteresis energy dissipation capacity; 1i.e., for a high post-
yield stiffness, a large strain energy is stored at a given displacement.
Maximum response decreases with an increasing post-yielding stiffness (Fig.5),
noticeably in short-period systems and insignificantly in long~period systems.
The response amplitude decreases rapidly when the post-yield stiffness
increases 4/80 to 16/80 times the yield stiffness.

EFFECT OF UNLOADING STIFFNESS DEGRADATION INDEX: The USD index controls
the fatness of a hysteresis loop and also the plastic residual deformation.
Maximum response increases with an increasing value of the index (Fig.6), and
this tendency is remarkable for short-period systems. The system's capacity
to dissipate kinetic energy is known to have a conspicuous influence on the
maximum response of a.short period structure. The effect of the USD index is
insignificant on the response amplitude when the maximum occurs at the initial
part of the earthquake. However, the index generally influences the maximum
response, response waveform, residual displacement, and hysteresis shape.

EFFECT OF HYSTERESIS MODELS
The effect of hysteresis properties are examined by using five

hysteresis models: (a) (Degrading) Bilinear model, (b) Clough model, (c)
Takeda model, (d) Degrading Trilinear model, and (e) Ramberg-Osgood model.

The vyield period is varied from 0.1 to 1.6 sec. Because the fatness of a
hysteresis loop influences the response amplitude, the USD index values of 0.0
and 0.5 are used in applicable models. The hysteresis energy dissipation

index (Eh) 1is introduced to express the capacity to dissipate hysteretic
energy dW per cycle at peak resistance Fm and displacement Dm,

Eh =dWw / 2 7 Fm Dm (2)

The values Eh are calculated at a displacement ductility of 4.0 for the
models; (a) Degrading Bilinear model (Eh=0.33 for a=0.0; Eh=0.19 for a=0.5),
(b) Clough model (Eh= 0.21 for a=0.0; Eh=0.11 for a=0.5), (c) Takeda model
(Eh=0.23 for a=0.0; Eh=0.14 for a=0.5), (d) Degrading Trilinear model
(Eh=0.11), and (e) Ramberg-Osgood model (Eh=0.28). The ductility demands of
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the models are shown in Fig.7 in two groups; Eh value greater than 0.20 (fat-
loop models) and less than 0.20 (thin-loop models).

The reliability of the Newmark's design criteria is examined using four
different earthquake motions: the El Centro (1940) NS and EW records and the
Taft (1952) N2IE and S69E records. For the criteria to be exact, the ductility
demand should be equal to the allowable value of 4.0. Although the ductility
demand falls close to the allowable value in a wide range of yield periods for
fat-loop models under the El Centro (NS) motion (Fig.7), the other three
motions caused ductility demands, especially from thin-loop models, much
greater than the allowable value. The design criteria are not satisfactory in
a very short-period range and for thin-loop models. The effect of hysteresis
energy dissipation needs to be included in the design criteria.

The distribution of maximum response with periods is different from one
earthquake to another, showing irregular shapes, although the resistance of
each model is determined for individual earthquake motion. On the other hand,
the distribution of maximum response with periods is similar from one model to
another for a given earthquake motion. In a fat-loop group, the Takeda and
Clogh models give comparable maximum response amplitudes; the regular bilinear
model, in general, demands less ductility than the Clough and Takeda models
probably because the Eh value of the Bilinear model is larger than those of
the two models. In a thin-loop group, the four models developed comparable
ductility demands. In other words, maximum response amplitudes are not as
sensitive to detail difference in hysteretic rules of the models, but rather
are influenced by more basic characteristics of hysteresis loops, such as the
shape of a primary curve and the fatness of a hysteresis loop.

The response waveforms of different hysteresis models under the El Centro
(NS) 1940 motion are compared in Fig.8 for the two groups. The yield period
is arbitrarily chosen to be 0.4 sec, and the yield resistance level is reduced
to 60 percent of the standard model. The hysteresis relations obtained are
shown in Fig.9.

In fat-loop systems, the Ramberg-Osgood, Clough and Takeda models show
similar hysteresis relations. The maximum and second largest displacements are
observed at the same instances for the four models. The Takeda model shows a
short-period oscillation at 1.0 sec, since the model has a trilinear primary
curve. The Bilinear model oscillates in a period shorter than the other
models, between 2.5 and 4.5 sec, attributable to the non-degrading nature of
stiffness. The Bilinear and Ramberg-Osgood models developed residual
displacment in the negative direction at 7.0 sec, whereas the Clough and
Takeda models developed positive residual displacement. The latter two
response waveforms are very similar each other.

Thin-loop models show displacement waveforms distinctly different from
those of fat-loop models, oscillating regularly in larger amplitudes and in
longer periods, which points out the importance of the energy dissipating
properties on the response. The Clough, Takeda, and Degrading Trilinear
models produced waveforms very similar one another, while the Degrading

Bilinear models exhibited a different waveform. The Clough and Takeda models
developed very similar hysteresis relations although the Takeda model had a
trilinear primary curve. This may be attributable to the fact that a large-

amplitude oscillation occurred at an early stage of the earthquake motion. In
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other words, the behaviour of the Takeda and Clough models could be different
if a small oscillation continues for a long duration, or if the yielding does
not occur during an earthquake.

CONCLUSIONS

Some stiffness and hysteresis properties of a model have a strong
influence on earthquake response amplitude; i.e., (a) the level of yield
resistance and the fatness of a hysteresis loop significantly influence the
maximum amplitude, (b) post-yielding stiffness has a medium influence, and (c)
initial stiffness and cracking force level have little influence for a
ductility demand higher than 4.0. The effect of these parameters is distinct
in short period systems. If the stiffness properties of a primary curve and
hysteresis energy dissipation capacity are comparable, the response amplitudes
and waveforms cannot differ appreciably from a hysteresis model to another. A
complicated hysteresis model should not be  penalized because the
complicatedness does not require a longer computation time.

ACKNOWLEDGEMENT

This research was initiated in Department of Civil Engineering,
University of Toronto (1975-79), and was continued in Department of
Architecture, University of Tokyo.

REFERENCES

1. Otani, S., and V.W.-T. Cheung, "Behaviour of Reinforced Concrete Columns
Under Biaxial Lateral Load Reversals-(II)Test Without Axial Load,"
Publication 81-02, Department of Civil Engineering, University of Toronto,
1981.

2. Otani, S., "Nonlinear Behaviour of Reinforced Concrete Building Structures
Especially Under Earthquake Motions,'" Contributions, TIASS Symposium 1978,
Nonlinear Behaviour of Reinforced Concrete Structures, Vol.3, Werner-
Verlag Dusseldorf, 1981, pp.311-51.

3. Ramberg, W and W.R. Osgood, "Description of Stress-Strain Curves by Three
Parameters," National Advisory Committee on Aeronautics, Technical Note
902, 1943.

4. Clough, R.W., and S.B. Johnston, "Effect of Stiffness Degradation on
Earthquake Ductility Requirements," Proceedings, Second Japan National
Conference on Earthquake Engineering, 1966, pp.227-32.

5. Fukada, Y., "Study on the Restoring Force Characteristics of Reinforced
Concrete Buildings (In Japanese)," Proceedings, Kanto District Symposium,
AIJ, No.40, 1969, pp.121-24.

6. Takeda, T., M.A. Sozen, and N.N. Nielsen, "Reinforced Concrete Response
to Simulated Earthquakes,’ Journal, ASCE, Vol.96, No.ST12, 1970, pp.2557-73

7. Nielsen, N.N., and F.A. Imbeault, 'Validity of Various Hysteresis
Systems," Proceedings, Third Japan National Conference on Earthquake
Engineering, 1971, pp.707-714.

8. Veletsos, A.S., and N.M. Newmark, "Effect of Imelastic Behavior on the
Response of Simple Systems to Earthquake Motions," Proceedings, Second
World Conference on Earthquake Engineering, 1960, Vol.II, pp.895-912.

9. Otani, §S., "Effectiveness of Structural Walls in Reinforced Concrete
Buildings During Earthquakes,” Civil Engineering Studies, Structural
Research Series No.492, University of Illinois at Urbana-Champaign, 1981.

555



150 T T

Yielding
o] - () Load Cycle Humber 9)
& N
4 g 8
H e . | £ 0. z 5 a=0.00
g R South g Ty=1.13sec ~§ Ty =1.13 sec
= a
2 |- Tokeda Model Tokeda Model )
Specimen 593 Taft (N2IN) Tafl (N2IE) |
ool Amax=0.174g Amax=0.174g¢
0 T R B
B Ll 200 30 40 Q7 53 05 o7
T o 0 o 0 100 0 S Initiol Stiffness Lracking Force
Columm Top Nisplacement, mm ield Siifiness Yield Force
Fig.l: Hysteresis Figure 2 Fig.3: Crack Level
20 T T T T 20 T T T T T 20 T T T T T
4 - . - _
B Tokeda Model ] - ] | Tokeda Model ]
- Taft (N2IE) ] - ] B
s oft | 5 I5—  Taft (N2IE) 4
B Amax=0.174g L B - Amax=0.174q n
10 4 10~ 1 10— 7
s 1 35r 1 81 7
3 1 8L 1 8L i
Ty=0.14 sec =
2 (romss]| =f 1= feossee |
= S 3 <
5 & &
3 i L i L i
5 . 5 a=0.00 b 5# Ty=1.13sec B
~ | Ty=1.13 sec N Ty = 1.13 sec 7 i~ 7]
L - L _
Taokeda Model
B ) Toft (N2IE) i )
— ] — Amax=0.175¢g 4 - i
oL | .+ 1 oL S N E ob—t 1 1
0.6 1.00] 1.4 1.8 1l 2 4 8 18 0.0 0.2 04 0.6
Yield Strength /Standord Strength 80 80 80 80 &0 Parameter a

Fig.4: Yield Level

Post-Yield Stiffness
Yield Stiffness

Fig.5: Post-Yield Stiffness

556

Fig.6: USD Index



(n,/0.)

Attained Ductility Factors,

cH

DISPLACENMENT ,

~
S

T

C T T 1 T T T E T T 7 T T 1 T 71 od [ S T T T o= T R LR
= E E = e 3
150~ El fentro (NS) E'} €1 Centro (EW) 3 15 E- E Centra (NS; E £ lentrc (£
- o Takeda  1=0.0 3 C G Takecz o =053 [
m’;_ 3 #-0sgood £ 3 16 E- & b-r F
L aClouar =00 | ER L O Clough o = 8.3 _
L. 208l =00 | | . @ D-Bil o= 0.5 [ 4
E = B & - ~
L 4 - L A
=
q r 4 5‘ 4 - 4
2 1 s 2 S 4
L 4 T L L 4
20 T B A B A S B | TR T A B jan } 20 bttt 1 i i
£ 3 1 - E L 3
e Taft (N21E) F Taft (S69) 3 LB Taft (W21E) L Tafr (S89E) E
E L e s £ L 3
! s F 3
== o 3 = b 3
L L i = L 3 4
I [ 2
L L 3 L 4
i - g - 4
L L 4 L 4
A L - - -] -
4— z L . L .
£
. | BRI DI I Lo b by by b o | T N B | IS BT I
01 0.2 0.6 0.8 1.5 0.1 02 0.4 08 1.6 0.1 0.2 0.4 0.8 1.6 C1 02z 0.4 0.8 1.
Undamped Yielding Period (Ty). sec Undamped Yielding Feriod (Ty}. sec
Fig.7: Ductility Demands of Fat- and Thin-Loop Models
4.0
4.0
]
N [\1,\ 1 A ’/\S N
. Ao Nh | [ \
0.0 i~ g l O [\ /\ yepeef b4 ML[
\/ °-°l G g
\/ \fv’\f\/\/\/\./\ T F e VA / VAV
-4.04 (a) Bilinear Hodel ( o = 0.0 ) a0l (2) Degrading L/ (a=05)
07 a0+ /\ Bl‘hnear Nodel
0 | \
: LA A
o J/\I ] 2 W05 VA W A | AU 1 o
. g u:ﬁww‘:ww‘
i }
VAT AV
. [ [V
38 (b) Ramberg-Osgood Model ( y = 3.79 ) g 4.0
U7 H 2.0 {b} Ciough Model (a=0.5)
g
=
1\ [\ AN 2 \ /\ /\ \
0.04 - 7\ 1[\\ VAN & A4 /\ i j L.
. D e . \\/’ - 0.0 V[L\ Tll‘llT‘)
I
4.0 Clough Model - 0. /
4_3. (e} Clough Hode te=00) ':g \ (c) Takeda Model \_/ /\ (o=05)
0.0 A p\ A /V\ ﬂ, p o) \ \ l Aops
' L . \}l\/ 0.0 T ’ -
-4,0J \} (d) Takeda Model ( o = 0.0 ) 0 v \ \/
. ) . X . ) . . (d) Degrading Trilinear Model
0 ) 2 3 3 5 6 7 ] o . ; 5 R N p ; N
TINE, SEC. TIME, SEC.

(a) Fat-Loop Models

(b) Thin-Loop Models

Fig. 8: Response Waveforms of Different Hysteresis Models

557



kh

Resistance,

kN

Resistance,

kn

kesistance,

kH

Resistance,

4.0 as T T T ™ T
2.0
[ L
/W ﬁ
0.0 A
)WL -
~2.0 | (a) Degrading Bilinear (b) Rambery-Osgood 1
todel (o= 0.0) Model (v = 3.79 ) T
-4.0
4.0 T T T T T T T T T T
| L
2.0 [
0.0
-2.0 F
(c) Clough Model (d) Takeda Model
L (a=0.0) (o=0.0)
-4.0 — A 0
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
Displacement, cm Oisplacment, cm
(a) Fat-Loop Models
4.0 T T ™ T
2.0
0.0
-2.0
| (a) Degrading Bilinear || 1 (b) Clougn Midel
twdel (a=0.5) (a=0.5)
-4.0
1.0 1 T T T —r
2.0 F /W/ L
: / é - <
-2.0 ' / 4t p
(¢) rakeda Model (d) Degrading Trilinear
(a=0.5) T  todel
3.0 .\ . -
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 -4.0 -2.0 0.0 2.0 1.9 6.0

Displacement,

(b) Thin-Loop Models

cm

Displacement, cm

Fig.9: Hysteresis Relations of Different Models

558





