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SUMMARY

A promising analytical model for nonlinear dynamic analysis of steel
frames is described. This approach is based on an updated Lagrangian for-
mulation in conjuction with force-space, concentrated plasticity.
Kinematic strain hardening behavior is modelled by the bounding surface
concept. The analysis is implemented in a highly interactive, adaptive
system using computer graphics and a super-minicomputer. Selected exam-—
ples illustrate the effectiveness of the analysis strategy described.

INTRODUCTION

The main objective of the investigation reported is to establish a
nonlinear dynamic computational procedure effective for the design of
steel frames. This objective leads to four fundamental requirements:

(1) an element formulation which accurately reflects structural and
material behavior such as the Bauschinger effect; (2) a simple and concise
procedure to evaluate the structural tangent stiffness matrix; (3) a
flexible and efficient implementation in an interactive transient analysis
system; and (4) interactive computer graphics to display current
information regarding the analysis and results in real time.

A promising model that satisfies the above requirements is based on
the common assumption of concentrated plasticity. However, a new aspect
is that material nonlinearity is accounted for by a bounding-surface
kinematic hardening model in force space.

MODEL DESCRIPTION

The proposed stiffness formulation is in some ways similar to the
Porter and Powell elastic-perfectly plastic model (Ref. 1) but differs in
that it includes the effect of strain hardening. A concise and simple
formulation of the element stiffness matrix is given in detail im
Ref. (2). However, it is appropriate here to mention some of the assump-
tions, principles, and strategies used in the current approach:

1) Concentrated plasticity. All the plastic deformations are confined to
zero-length plastic zones at the ends of beam-column elements.

2) Force-space yield surface. At each stage of plastic deformation there
is a unique yield surface (y.s.) in the force space (F(S,a) = k) so that

strain hardening deformation takes place only for F(S,a) > k. {S}, {a},

and k are, respectively, the vector of element end forces, the vector of
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y.s. offset, and y.s. size.
3) Incremental displacement and force decomposition principles. During
the plastic flow the total displacement vector {d is decomposed to
elastic and plastic displacement vectors, {dq} = ?dqe} + {dqp}. The force
vector {S} is also decomposed into components tangent and perpendicular to
the y.s., that is, {dS} = {dst} + {dSn?
4) Associated flow rule and Drucker's normality criterion. This assumes
that the {dqp} is perpendicular to the y.s., i.e., {dqp} = [G}{m}, in
which {m} is a two—element vector containing the magnitudes of the plastic
deformation at the two element ends and [G] is the y.s. gradient
coefficients matrix.
5) Geometric nonlinearities. The force vector is related to the elastic
displacement vector by the total stiffness matrix [Kt] such that
{dS? = [Kt1{dqe}, in which [Kt] is the summation of the conventional
elastic stiffness matrix [Ke] and the geometric stiffness matrix [Kg].
The latter is based on an updated Lagrangian formulation and the
assumption of large- displacement, small-strain behavior.
6) Hardening coefficient matrix [Kh]. It is assumed that {dSn} is related
to the plastic deformation matrix as: {dSm} = [Kh] {dqp}. [Kh] is
defined as a diagonal matrix of the plastic moduli coefficients and is
given in a concise form. For example, neglecting shear effects, [Kh] for
a 2D beam-column element has the form

[Kh] = diagonal [Kapl 0 Kfpl Kap2 0 Kpf2]
in which Kapi and Kfpi are the axial and flexural plastic moduli at the
end 1.

From the above concepts, expressions for the plastic deformation
magnitudes and the hardening reduction stiffness matrix [Kp] are obtained
(Ref. 2):

{m} = Cre1®rixe] + (xnllred "trel kel {daq} (1)

{as} = [lxe] - [kelle] (fe1Trixe] + txnlite) el ¥ Re]]{aq} 2)
or

{as} = [[xt] + [Kpll{dq} (3)

The plastic deformation magnitudes {m} serve as indicators for unloading
if negative values are obtained. In such a case, the force point is no
longer constrained to remain on the loading surface and structural
stiffnesses are reformed to reflect elastic unloading.

As mentioned above [Kh] is a diagonal matrix that contains plastic
moduli coefficients for the element's two ends. In the current investiga-—
tion the following formulae are used for the plastic axial and flexural
modull at the ith end of an element:

Kapi = BLi(EA/L) & Kfpi = B2i(6EI)/(L(2+Mi/Mj)) (4)

in which Mi and Mj are the updated bending moments at the element ends.
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Equation 4 is derived from the virtual work principle and is based on the
assumption that the curvature distribution along the beam is mainly a
function of the end moments ratio since, in this work, all loading is
applied only at the joints.

At initiation of plastic behavior, the Bi's must be infinite to
achieve a smooth transition from the elastic into the plastic range. On
the other hand, the Bi's are zero for the elastic-perfectly plastic case.
In the latter case the formulation will lead essentially to the Porter and
Powell approach which has been used by Orbison and others (Ref. 3).

PLASTICITY MODEL

The approach selected for detailed development because it provides a
smooth hardening model and relatively good computational efficiency is the
bounding surfaces approach originally proposed by Dafalias and Popov
(Ref. 4). In the current work this model is extended to model behavior in
force space.

In this model the elastic region is represented by the interior of a
loading surface F that represents force interaction at the start of yield.
This surface is always enclosed by a second surface called the bounding
surface which may also move in force space (Fig. 1).

P/Py

Bounding Surface

Fig. 1 Use of the Same Single-Equation Surface to Idealize Both the
Loading and the Bounding Surfaces.
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The loading surface may translate according to an appropriate harden-
ing assumption. In the current investigation, the direction of the trans-
lation is specified, as suggested by Mroz (Ref. 5), as the unit vector
along the line connecting two points, {S} and {S'}, one on each of the
surfaces, characterized by identical outward unit normals.

It is possible for the loading surface to contact the bounding sur-
face but not intersect it, and the two surfaces move together while
in contact. However, if elastic unloading takes place, the loading sur-
face detaches from the bounding surface and moves in an inward directionm,
while the bounding surface is assumed stationmary. It is possible to allow
for gradual change of surface sizes. The bounding surface may also be
allowed to move but with a slower rate. However, in the present implemen-
tation the bounding surface is assumed fixed except when in contact with
the loading surface, and both surfaces are kept at their original size.

The plastic moduli depend on the distance d between {S} and {S’} as
suggested by Dafalias (Ref. 4) and shown in Fig. 2:

K11(1 + K12 —-,—i——-) (5)

din - d

Bl

d

din - d

B2 = R22(1 + K21 ) (6)

in which din is the value of d at the most recent initiation of yield.
K11, K12, K21, and K22 are coefficients to be specified by the user
according to the available experimental data. The updating of din is
essential, since it accounts for the effects of the recent past history.

The surface used in the current approach was developed at by Orbison
(Ref. 3) to model plastic hinge formation of steel cross sections,

1.15 p2 +m> + 3.65 p> m® = k (7)

in which p = (P - al)/Py is the ratio of the axial force to the yield
load, m = (M - a2)/My is the ratio of the strong axis bending moment to
the corresponding yield moment, and al and a2 are the current offsets of
the surface in the P and M directions, respectively.
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Fig. 2 Plastic Modulus vs. Distance from Bounding Surface (d).
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Figure 1 shows the application of Eq. (7) to model both the loading
and the bounding surfaces by scaling it to two different sizes. It is
shown that, although the equation shape is based on the assumption of
complete plastification of the cross section, it gives an acceptable
approximation to the initial yielding surface when appropriately scaled.

ANALYSIS IMPLEMENTATION

The above model was implemented in a two-dimensional dynamic non-
linear analysis program, initially developed by Gattass (Ref. 6) and
expanded by the first author. This program performs static, dynamic,
modal, and buckling analysis with real-time graphical feedback. The pro-
gram uses updated Lagrangian procedures, a skyline solver, and dynamic
memory allocation.

Implicit direct integration analysis is used to solve the coupled
equations of motion for the system described above. The time increment
size is controlled during the analysis so a change of the element harden-—
ing (onset of yielding or contact with the bounding surface) does not
occur within the increment itself.

The analysis program is incorporated in a comprehensive interactive
graphic analysis and design system which provides an environment with con-
siderable flexibility for the performance of nonlinear anaysis (Ref. 6).
In this environment, analysis may be performed either in a time-sharing
mode or assigned to a batch queue for execution at a later time. The
interactive graphics techniques to control the flow of the analysis and to
monitor results are based on a hardware configuration that consists of a
vector refresh display terminal, a digitizing tablet, an-editing terminal,
and a super—minicomputer.

The program consists of various menu pages such as the one shown in
Fig. 3. The structural response is monitored in 3 different viewports,
and the user may switch information from one to another. The user inter-—
acts with the program by pointing to the commands on the menu either to
move to another menu or to perform a required procedure. Special
parameter pages permit user specification and checking of the experimental
data of eqs. (5) and (6) and all the other parameters needed for
performing nonlinear analysis. For the batch analysis mode, a provision
is made to save and display the result output files with full advantages
of the graphics feedback originally developed for real-time analysis.
More details of the program are given in Ref. (2).

EXAMPLES

Two abbreviated examples are selected to indicate the effectiveness
of the program developed from the above ideas. For both examples, the
hardening parameters are chosen as follows: K11 = 0.03, K12 = 0.5, K21 =
2.0, and K22 = 0.03. Figure 2 shows the variations of the plastic moduli
along the distance between the loading and the bounding surfaces. Geo-
metric nonlinearity is considered for all incremental analyses. Zero
values are assigned for damping parameters. The CPU times given are for
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a VAX 11/780.

A single-bay, one-story portal frame is subjected to vertical and
horizontal concentrated loads as shown in the upper left monitor of Fig.
3. These loads follow a cyclic sinusoidal load history with an amplitude
of 4.0 kips and a period of 5 seconds. A light-weight steel cross section
of Wl4x22 was used for both the beam and columns. The analysis was per-
formed in 200 time steps with an average time of 0.081 seconds and a total
CPU time of 90 seconds. Figure 3 also shows the force-point trace of the
lower end of the right colummn at the end of the analysis. The upper moni-
tors portray the bending moment diagram and the relationship of the

FRAMES —-- 2D

i 8-0CT-83
4
I

/ PROGRAM OF COMPUTER GRAPHICS
STRUCTURAL ENG. DEPARTMENT
CORNELL UNIVERSITY

e 4w L IR
WoRcz. omt. AT w0k 2

FORCES INTERACTION AT NODE 4 IMPLICITxx
RESTART |60 THROUGH

STEP BACK |STEP AHEAD

ONE STEP CONTINUE

RES VECTOR [EXAM RESLT

INFO CLEAR PLOT

PLOT SETUP |MONI SETUP

AXIAL FORCE

READ BATCH |WRITE FILE

F ROT. X +- ROT Y ¥

- ROT z +H- 2ZOOM +

PAN RESET

HARD COPY | FULL VIEW

<730.18 -438.06 = -145.95 146.47 ' 43828 | 730,40
BENDING MOMENT EXIT

Fig. 3 Analysis Information for Example 1.
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applied force vs. the horizontal displacement of the upper right node.

A four-story two-bay building is shown in Fig. 4. A concentrated

mass of 0.1 k—secz/in. is attached to each joint. The structure is sub-
jected to the first 5.0 seconds of the N-S component of the 1940 El Centro
earthquake. The moment history of the lower end of the fourth story cen-
tral column is shown in Fig. 5 for both elastic and nonlinear cases. The
CPU time for the linear analysis was 35 seconds for 62 steps of 0.1 sec-
onds each, while the nonlinear analysis was performed in 102 seconds with
112 steps. Plastification was observed in eleven different locations.

CONCLUSION

The approach described in this extended abstract incorporates, in the
authors' view, a promising tool to provide a clear insight into nonlinear
dynamic behavior of steel frames. The concise formulation of the tangent
stiffness matrix along with the bounding surface approach which employs
realistic and admissible single~equation yield surfaces permit effective
and reasonably fast nonlinear analysis. The implementation in an inter-
active computer graphics environment has an obvious advantage in that it
allows the user to trace and understand structural nonlinear response.
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Fig. 5 Moment History at the Lower End of Member 16.
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