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SUMMARY

This paper presents efficient computational algorithms for the seismic
analysis of structures with predetermined, localized nonlinearities. Two
procedures for dynamic step—by-step analysis have been formulated, using a
general substructuring methodology. The methods can be applied to any
structural system which can be separated into linear and nonlinear components.
A final analysis model is assembled from all the nonlinear finite elements
plus any number of linear superelements. The methods are illustrated by case
studies on a steel frame with base uplift, and a concrete arch dam with
verticle joint opening.

INTRODUCTION

Present earthquake design philosophy recognizes that many structures will
be stressed beyond their elastic limits in the event of a major earthquake.
An acceptable design is one which will resist a moderate earthquake with no
primary structural damage, and survive a catastrophic earthquake without
collapse. In the design process, structural elements are proportioned using
linear structural analysis, although it is recognized that nonlinear behavior
will occur. Adequate performance under severe loadings is engineered using
judgment and good structural detailing. Performance during severe earthquakes
can be evaluated using nonlinear finite element analysis techniques. However,
existing nonlinear techniques are too expensive for use by the practicing
professional engineer.

This paper presents results of a study [1], in which efficient methods
were developed, for the dynamic seismic response analysis of structures with
localized nonlinearities. The physical characteristics of this class of
structures are exploited by using substructure concepts in the dynamic
response analysis. The linear substructures can be identified and coupled
together by a nonlinear substructure [2,3].

Many important structures with such local nonlinearities can be
identified. One major class consists of structures which are designed to
permit tipping or uplift in response to horizontal earthquake excitation, such
as; bridge piers; buildings mot anchored against uplift; thin shell metal
cylindrical liquid storage tanks with base uplift. An additional category of
localized nonlinearity is encountered in structures with joints which may open
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or close during earthquakes. An important example is a concrete arch dam
which is built as a system of independent concrete monoliths separated by
vertical joints. Even though these joints are grouted under high pressure to
provide continuity under static loading, during dynamic response to an intense
earthquake they tend to open. The actual dynamic behavior, and a rational
assessment of safety, can be determined only by a nonlinear analysis which
accounts for opening and closing of the joints.

NUMERICAL ALGORITHMS

Two step-by-step dynamic integration procedures are presented for
structures with localized nonlinearities. Both methods are based on the use
of linear and nonlinear substructures. They are much more efficient than
standard nonlinear analysis because the element state determination
calculations and stiffness matrix reduction operations are limited to the
final level nonlinear substructure. The scope of the nonlinear analysis
problem is reduced to the size of the nonlinear substructure. The formulation
and numerical implementation details of these methods can be found in ref [1].
The methods are summarized as follows.

Exact Method

The major numerical tasks required during a given time step are listed in
Table 1. This method is numerically "exact", in that it considers all d.o.f.
of the linear substructures. The method is formulated within an overall
automatic time step selection strategy. Within a given time step the
nonlinear solution is calculated using an event-to—event strategy (step C)
which controls load unbalance and makes the analysis automatic. The linear
substructures are solved in terms of a transformed variable, A%j, which
simplifies the calculation of the effective load at each step (see step Bl.)

Ritz Method

This method is summarized in Table 2. The method is approximate because
it uses Ritz functions, based on the fixed base modes to represent the
dynamics of the linear substructure. This method is formulated within the
same overall automatic time step strategy, and the procedure at the nonlinear
substructure level is identical to the exact method. The Ritz method is
particularly useful for systems with very large linear substructures. Such
systems can be analysed accurately by considering a small number of
generalized d.o.f.

CASE STUDIES
The above methods were illustrated by studies on: (1) A frame structure
with base uplift and (2) a comcrete arch dam with joint opening. The accuracy
of the different procedures is assessed, and the computational eftorts (number

of numerical operations) are compared.

Frame with Base Uplift

The two-dimensional model of a 9-story, 3-bay steel frame which was
studied both experimentally and analytically by Huckelbridge and Clough [4] is
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shown in Fig. l. For the analyses described here, uplift effects were modeled
using gap elements. Each element is a nonlinear elastic spring, with finite
compressive stiffness and zero tensile stiffness. A compressive stiffness of
500 k/in was assumed, corresponding to a relatively stiff impact pad. The
structure is modeled using two substructures, namely a linear substructure
consisting of elastic beams and colummns (the superstructure), and a nomlinear
substructure (the final structure) made up by attaching gap elements at the
base. The frame was analyzed for the first 6.2 seconds (before time scaling)
of the El Centro, 1940 N-S record, considering only horizontal ground motion.
The record was amplified in intensity to produce a peak ground acceleration of
0.912g. For solution stability, the event-to—event solution strategy was used
with a constant time step, At = 0.0l sec.

Results from the analyses are shown in Figures 2 through 4. Results
using the exact method are identical to those for the fully nonlinear analy-
sis, as expected. The results from the approximate analysis with 10 Ritz vec-
tors are essentially identical to the exact case (see Figs. 2-4). Analyses
with different number of Ritz vectors indicated that higher modes of vibration
in the superstructure have a significant effect on the gap forces. In par-—
ticular, the gap forces are affected by vertical high frequency oscillation
through the columns. The total numbers of operations for both the exact and
the Ritz (10 modes) analyses were 1.0 x 10° and 2.9 x 10°, respectively. This
is significantly less than the 15.4 x 10° operation for fully nonlinear analy-
sis. The savings result from skipping the state determination calculations in
the linear substructure. A comparison of the numbers of operatioms for the
exact and Ritz analyses shows that the exact method requires fewer operatiomns
for this example. The advantage of the Ritz method is that fewer operatiomns
are required for load reduction and backsubsitution in the linear sub-
structure. This is not a major saving for this example because the number of
internal degrees of freedom (d.o.f.) for the linear substructure is small.

Arch Dam with Joint Opening

The Xiang Hong Dain dam is a single-~curvature arch dam, built in China,
which has been studied analytically by Clough [5] in its linear elastic range.
The three-dimensional model used for the present study is shown in Fig. 5.
Five vertical planes of contraction joints were assumed, as shown, in each of
which joint opening could occur.

Joint opening effects were modeled by zero-length gap elements, with
finite stiffness in compression and zero stiffness in tension. The dam body
was modeled by l6-node linear elastic 3D solid elements. The rock foundation
was assumed to be rigid. The assumption of five vertical joints divides the
arch dam into six concrete monoliths, each modeled as a linear substructure.
The final structure is assembled by adding gap elements (representing the
joint regioms) to the six superelements. Hydrostatic loads were initially
applied which produced compressive forces in the joints. The dam was then
analyzed for the first three seconds of the El Centro 1940 N-S record, applied
in the upstream-downstream direction (horizontal Y-direction). The record was
amplified in intemnsity by a factor of 3.0 to produce a peak ground
acceleration of G.96g. The event-to-event solution strategy was used, with a
constant time step at = 0.01 sec.

477



The results from the analysis are shown in Figs 6 through 10. Gap
opening occured in all the contraction joints. The largest computed opening
was at the dam crest on the upstream face equal to 0.03226 m (more than 1-1/4
in.). The results from the analysis with 5 Ritz vectors are in fairly good
agreement with the exact result. Operation counts were performed to compare
the computational efforts involved in the exact and Ritz a%alyses: The exact
method requires fewer operations (1.43 x 10% vs. 1.76 x 10°). This is because
most of the effort is in the large final nonlinear substructure (313 d.o.f.
vs. 5 generalized d.o.f. for each linear substructure) which is the same for
both methods.

CONCLUSIONS

This paper has presented and demonstrated efficient computational schemes
for the seismic analysis of structures with localized nonlinear zomes. They
allow the analysis and seismic performance assessment of many structures which
were previously impractical to analyze. Both the exact and Ritz methods give
accuracte solutions to the cases studied, for approximately the same numerical
effort. Both methods are much more efficient than standard nonlinear analysis
techniques. The Ritz method is particularly efficient for structures with
very large linear substructures.

ACKNOWLEDGMENTS

The support of the National Science Foundation, under Grant No.
PFR-7922695 is gratefully acknowledged. The authors wish to express their
appreciation to Professor R. W. Clough for his interest and advice throughout
this project.

REFERENCES

1. Row, D. G. and Schricker, V. "Analysis of Earthquake Induced
Response for Structures with Localized Nonlinearities", Report
to National Science Foundation, SSD, Inc., Berkeley, February 1983.

2. Row, D. G. and Powell, G. H., "A Substructure Technique for Nonlinear
Static and Dynamic Analysis," Report No. UCB/EERC 78-15, University of
California, Berkeley, August 1978.

3. Clough, R. W. and Wilson, E. L., "Dynamic Analysis of Large Structural
Systems with Local Nonlinearities," presented at the Interpational Con-
ference on Finite Element Methods in Nonlinear Mechanics, Institut fur
Statik und Dynmamik, Universitt of Stuttgart, August 30 to September 1978.

4. Huckelbridge, A. and Clough, R. W., "Shaking Table Tests of Building Frame
Permitted to Uplift," Journal of the Structural Division, ASCE, Vol. 104,
No. ST8, August 1978.

5. Private communication with R. W. Clough, University of California,
Berkeley, 1983.

478



TABLE 1 EXACT METHOD
CALCULATIONS TO BE PERFORMED IN TIME STEP j, (At;) FOR EVENT-TO-EVENT STRATEGY WITH AUTOMATIC TIME STEP SELECTION

A.LINEAR SUBSTRUCTURES - STIFFNESS FORMATION AND REDUCTION - [Performed initially and at changes in time step)

1. Form Effective Stiffness Matrix - [Damping; C=oM+ BK]
N P : S VR S, AN SR I
K l(ii—l(-ir (31+uaa)ﬂ+(1+854)£’ whereml-B 7 "Bt 3 B ATEA % TE %I 1
. . At n o j n n 3 n n
KK g
=i —rr
2. Reduce to Superelement D.O.F.
Ko = E_"_ - 511 Ed.i 51 = Reduced Effective Stiffness
B.LINEAR SUBSTRUCTURES - EFFECTIVE LOAD REDUCTION - [Performed at all s:eps]
1. Form Effective Dynamic Load Increment - [in transformed variable, Agc_j]
= 1y E . e}
== + + ¥ . == 8. = ~1) - - . = -1 -
g—j ; = Ej H(Blij-l 525;]-1 + 335:1_1), where B, T+5a, i B, a2+c¢(a5 1) B(ag 1)51, By=ay+aa,-l Eabsl
3
3
2. Reduce to Superelement D.O.F.
~ - ~ SR
Pas TRy R K K By
- - - . + .
3. Transform to Standard Displacement Variable [ASj Aij ("151-1 + bzsj-l b351§—1)]

- - ~ -B(a;-1) -Ba
: . . [ SO - M
ey T Emy T Kg (yryg t by Ty tbay )y vhere by s By T T Py T T,

C.NONLINEAR SUBSTRUCTURE - [Event-to-Event Solution Strategy; Performed at all steps]

1.

Form Total Step Load

n E % sub ~
R. = AR+ + < =
.‘\_J A—j Ry Aﬁj_ld- i Rgy where AR 1 M(a

% Ea k) G (asny taE )

Solve for Incremental Displacement Using Event-to-Event Strategy - [Perform for event substeps; n = 1, 2, ..., mj}

a. Form Total Current Tangent Stiffness

L sub .
'lk. = K.+ T ; where K, = nonlinear substructure tangent stiffness at ste , substep n.
R % ] 1Y oy 8 P ] P

b. Solve for Substep n Displacement Increment

n-1

855 = £ 1 (1-f) AX; vhere £
™ n k.’l £, _j,uere k

= event factor for substep k, and Il indicates the product

N

¢. Accumulate Displacement Increment ASJ- = Agj + Ar

a4

D.LINEAR SUBSTRUCTURE - DISPLACEMENT RECOVERY - [Performed at all steps]

)

Transform Superelement Displacements Ar

3T
11 ¥ Py * bt

to Ax.
o 8xg

A =
'Ejr Aljr + (b

Backsubstitute for Ax

=H

Al o~ -
Ax. . = K. -
%517 R4 (Pﬁ'.j & Aljr)

Calculate Increments in Displacement, Velocity and Acceleration

A

. . AL o _ . - AR = - . +a ¥
S tBEy g thaEy )i ATymaan, - (agr,  bagd, )i ATy = e Ary- (@ tagE, )

i
"
o
J®
]
~
o
e
-~

NEXT STEP

Re

1)

turn to A. Based on midstep error norm do one of following:

Continue with current step size, or; 2) Continue with increased step size; or; 3) Repeat with reduced step size
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TABLE 2 RITZ METHOD

CALCULATIONS TO BE PERFORMED IN TIME STEP j, (at,) FOR EVENT-TO-EVENT STRATEGY WITH AUTOMATIC TIME STEP SELECTION

A.LINEAR SUBSTRUCTURE - RITZ REDUCTION - [Performed once prior to step-by-step analysis]

1. Form Stiffness and Mass Matrices

K., X M

K- ~ii =ir P M= it = diag.
K. K o M
=ri ~rr Ty

2. Solve for Lowest Fixed Base Modes

K, 0 =n 8

=i m —iim

3. Form Coordinate Transformation and Reduced Matrices

L
EA N N Tes

T e 1 b
= =

T

+~ r=Tr* ; Kk = TT KT M+ = fM T r* = Generalized displacements

B.LINEAR SUBSTRUCTURE N EFFECTIVE REDUCED STIFFNESS FORMATION AND REDUCTION - [Initially and at changes in time step]

1. Form Effective Stiffness Matrix - [Damping; c* = aM* + BE*]
K* R
=an =nr
Kt k#
=tn =rr

K* =

= (ay + aa,) H* + (1 + 8a,)K*

2. Reduce to Superelement D.O.F.

R = i* - ;(* ;(*'1 {(*
=rr “=rn -nn -nr

C.LINEAR SUBSTRUCTURES - EFFECTIVE LOAD TRANSFORMATION AND REDUCTION - [Performed at all steps]

1. Form Effective Dynamic Load Increment

S o R* T .E 3 5 - .
Rt - =l TRy + M [lay +oa-Dr ) + (a) + oag- o)t ]+ K* [Bag 3 ) + BCag-Dix ) - 13 y]
T {3

D.NONLINEAR SUBSTRUCTURE - [Event-to-Event Solution Strategy Performed at all steps]

Same as Section C in Table 1, with K§ replacing KR, and R‘i’{j replacing RR;]

E.LINEAR SUBSTRUCTURE ~ GENERALIZED DISPLACEMENT RECOVERY - [Performed at all steps]

1. Backsubstitute for Aﬁjn
Al ~

A = K* *x -

'E'jn L5 (gnj L. AL"’—_jlr)

2. Calculate Increments in Generalized Velocity and Acceleration

‘* - k- '* . [re . I - - . 3
:'Ej ay _rj’ (555—_1-1 + 365;]—1) H AE:’!' aAAr* {a r*_l + a

= Gt aiD)

F.NEXT STEP
Return to B. Based on midstep error norm do one of following:

1) Continue with current step size, or; 2) Continue with increased step size, or; 3) Repeat with reduced step size
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