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SUMMARY

This paper develops a practical approach to estimating reliabilities of
strongly deformed hysteretic structures. Accumulated absolute plastic defor-
mations are considered. The response processes are divided into several inter-
vals, each consisting of an elastic and a plastic step. Simulation shows the

durations of the both steps have Wald and lognormal distributions respectively.

The distribution of plastic deformation increments are derived by random vib-
ration theories. The numbers of yielding events during a given period are de-
layed positive recurrent remewal processes. When the period is long enough,
conservative values of the mean and the variance of accumulated plastic defor-
mations are easily obtained.

INTRODUCTION

Even for linear structures of SDOF, to obtain the exact results of relia-
bilities under random dynamic load is very difficult. However, several effec-
tive approximate approaches have been developed (Ref. 's 1 and 2).

In the field of earthquake engineering, hysteretic structures have to be
dealt with because of the importance of plastic deformation. It makes the
problem more difficult. Caughey (Ref.3), Wen (Ref.4) and others develop the
equivalent linearized approach. It can give reasonable results of response
only when yieldings are much less than elastic deformation, because it uses
viscous damping to represent the actual hysteretic damping.

Karnopp and Sharton (Ref. 5) developed two-state approach. Vanmarcke (Ref.

6), Grossmayer (Ref. 7), and Iyengars (Ref. 8) gave some improvements to it.

The approach follows real response processes. However, all the authors assumed |
yielding less than elastic deformation, so they could use the envelope process..

Because the ductility design principle is more and more popular for de-
signing earthquake-resistent structures, and ductility coefficient 4 to 8 is
often used for fram structures. Such designed structures will suffer plastic
deformation greater than elastic deformation. Mahin and Bertero (Ref. 9)
indicated structures designed by Newmark-Hall inelastic response spectra with
ductility coefficient 6, or by "Tentative Provisions for the Development of
Seismic Regulations for Buildings" (Ref. 10) with Cd=6 and R=7 will have a
number of yielding events and the cyclic ductility coefficient will be similar
to or greater than the specified ones. Obviously, durations of the plastic
steps of responses may be longer than those of elastic steps. Elastic stiff-
ness is mush greater than plastic stiffness for any structure, therefore the
responses can not be assumed narrow-band any more. Their approach will not be

satisfactory ti this situation.
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This paper gives a improved two-state approach to estimating reliability
of hysteretic structures strongly deformed under random excitationm.

SIMULATION RESULTS OF DURATION
OF ELASTIC AND PLASTIC RESPONSE STEPS

Symmetric elasto -plastic oscillators of SDOF under stationary Gaussian
white noise input with zero mean are considered. ?he following equation holds:
Am)+47ZA () +4T°E (n) = ~fi_ (n) (1)

where
n(n) = dimensionless deformation, (= deformation/yielding level)

n = dimensionless time, (= wot/2T)

wg = elastic cyclic natural frequency

z = viscous damping ratio, from 0.02 to 0.08

(") = derivative to dimensionless time n, ( = d( ) / dn)

ﬁg = dimensionless ground acceleration of Gaussian white noise of O-mean
f(n)= dimensionless resistence of the oscillators, see Fig. (1):

_r n@)-e(m), for [n(n)-e(n)| <1
f@) =1 sign n(n), for [n(n)-e(n)] >1 (2)
€(n) = dimensionless plastic deformation

Shinozuka's triangle series expression with 200 terms is used to generate

the input: 200 oM. 1

ﬁg(n) = ;i?kcos(_wo_ + ¢ ) (3)

where
¢£ random numbers uniformly distributed in (0, 2m)
Wy wit(k-1 / 2)Aw, and Aw= (wu—wl)/ZOO
w1 and w, = the lower and the upper band of the cyclic frequency of the
input, (=0.0lwoe, 20wy, respectively)

- 0.8 /.3 - - /_T So
ak 20 g T (mu w1) T, and Op 7 LU03

(yielding level)/gy, from 0.4 to 1.5 in order to get ductility 48

apg =
0o = variance of stationary elastic deformation response
So = the power spectrum density of the input

In Eq.l, there are only two parameters of structures and input, £ and ag.
For each of 35 different pairs of their values, over 300 groups of samples of
first excursion time t, (i.e. duration of elastic steps), duration of plastic
steps tpare taken. The method of moment and the method of maximum likelihood
are used and the following conclusions are found:

1) The histogram of elastic step durations can be best fitted by Wald
distribution (Ref,11), see Fig. 2 for an example among 35 curves, among the 6
common positive half axis distributions. The probabilistic density of duration
of the elastic steps, Pe(n), equals

L) = =i explZ8T) 1, g 50 %)
e 2T 2%
where the constants r and ¢ have the following relatioms to ¢ and ag obtained
by regression analysis, see Fig. 3:
r = 0.6317a0-1.795z+0.421 (5)
c= 0.3704a0-2.948a5+1.664a3-10.692+205.872-22.93a,2-0.2802 (6)
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Both the histograms and outcrossing rate (it is the upper band of the
probability density of first excursion time) appear multimodal. It can be be-
lieved that p_(n) is multimodal. Therefore, all of the unimodal distributions,
including those derived from the maximum entropy principle (ref. 12), can not
fit it well. So the chi-square test indicates Eq. 4 is significantly different
from the histograms. However, the first peaks are much greater than all of the
others. After several steps, all the small peaks in the densities will have
negligible influence to the next excursion time. According to Mahin and Ber-
tero (ref. 9), structures designed with ductility coefficient of u = 4 and
excited by the design-level ground motion will have 10 to 20 or more yielding
events, if they do not collapse. Consequently, if a distribution functionm fits
the major peak very well, and passes the average levels of the remains, it
should work well for estimating reliability in this case. Then it can be
avoided to use more difficult methods such as Kernel demsity fitting technique
making the results too complicated to be used.

2) The histograms of plastic durations are fitted by the beta distribu-
tion, see Fig. 4 for an example among the 35 curves, at significant level 0.05.
So the probability density of plgftic duthions, Pp(n), is

P _9-
o Gt Lo, g > 0 )

p—1
4P B(p,q)
B(p,q) = the beta function.
The relations of the constants b,p and q to 7 and ap are from regression
analysis, see Fig. 5:
b = ~0.06524a¢+ 0.02152a02-3.7962-9.77%+12.68Ca7 -35.91¢2%a¢>+0.2115 (8)

p= 5.48lag-2.443a0%+25.287~87.09a,C+49.83a,27~0.8875 9
q = 3.184a¢-2.421a9%+11.17¢-363.722+31.01a,z +2.263 (10)

Py (n) =

where

PLASTIC DEFORMATION INCREMENTS

For the dimensionless absolute plastic deformation increments of the
nonstationary plastic responce steps, y(n), the following equation holds:

¥ (m)+41zy () = -[ ﬁg(n)+4ﬂ2 1, 3 >0 (11)
with the initial conditioms:
{ y(0) =0
y(0) =vg, vo >0 (12)

where vy = the dimensionless impact velocity, a random variable.

Eg.'s (11 and 12) are linear. The input #i_ is Gaussian. So, the smaller
the variance 0. (n) is, the closer to Gaussian ® y(n) will be. Then, approximate
probability deXsity of y(n), py(y;n), can be derived analytically.

The joint density function of y(n) and y(n) is
p..(u,v;n) =C exp{-A(u-E[y(n)]) B (uv-E[y () 1)} (13)
7 o, (n) (v-E[3 () 1)

= 4[1- 257 d B= -
& = limo, T "oy (), and B 725 w70, oy (o

where

(14,15)

~ 1 -(v-E[ym)D?* ,
¢ = T, 5@ =P I @) o @ ' (16)
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-4TCny T n

Ely(n)] = Mr;(E[vo] +Z)(l-e c =7 (17)
2 E{ly(n)] = E[Vo]le -4men_ "1 Z(l—e ﬂgn) _ (18)
o, tm) = m, 2 (1-e ““Cn>2+ T T T B CTS
V (n) -87tn +4ﬂ2332(1_e—8ﬂCn) (20)
Covly(n),y(m)] = 4W zﬂcn (1-e74T0%y 4 omr a2 (g 4 MER e 8TED) ()
(C) Covly(n),y(n)] (22)
Py = 0y (n) 0y (n)

When y(n) = 0, y(n) is the absolute yielding increment of the plastic step,Ay,
The probability density conditional on y(n) =0 is

. u,0;n)
(un) = Py @) | (23)
Py(n) |y (n)=0""* f? Py (n)¥ () (u,03n)du
Ihe marginal demsity of Ay is /
(o]
= . R (n) dn . 24
pA(u) _’-opy(n)]y(n)=0(u’ ) Pp ) ( )
In Eq.'s (13 to22) E[vy] and Gvﬁ, the mean and the variance of vy , are
derived ~ » . .e elastic responce equation, Eq. (1), and the initial
conditions:
¢ Inf =1 (25)

h() =
The "-~int density function of the elastic deformation and velocity, n
and 7, is

- 1 1 (x=E?® 20(x-Ey) (v-Ep)  (v- E2>
Prn(5Vin) = gie, 1T P s T or o1 07 T 10 (20
A e-zm;n[/ 17;; sin(2my 1-C2) + cos(2m/  1-22)] (27)
Ey = E[A (a) =—EZ:.—EMH 7_1%7 sin(2my/1 2] (28)

o1%= Var[n(n)] = —alz {l—e—T———z-[l—’cos(4ﬂn/l—;§)+c/ Z sin(4mv1_£2)1} (29)

o2t Varli(w)] = 2L (1~ S50 feos (b TIE7 - /] C7 staGhmaigD]E (0
ayp 4
o = ,EE_EEE__~—— [1-cos(4Tnv1- C:)] (31
ap ”10 (1“ 2)

When n(n)l =1. fi(n) is the impact velocity, vo. The density conditional on
[n() 1 equals .
(1 vos;n) + Py (—1,—Vo;n)

iln(n)l‘ (vo,n) .fm [p (1 z;n) + P (-1,~z;n)]dz > Vo>0 (32)

Note that the distribution dersites, Eq.'s(26 and 32) are also conditional
on that the duration of elastic steps, tes equals n. The marginal density of
vo can be derived from Eq. 4:

PVO(V) =J-0Pﬁ{]n(n)]=l(v 3:9) Pe(n) dn (33)

The mean and the variance of the impact velocity, vy, are

E[V ] =J°0I°:Z[Pnﬁ(1,2;n) + Pnﬁ(T.l.’_—_Zm;n)]dz
Q 0 fooc [Pnﬁ(l,z;n) + pnf\i(_l,"z;n)]dz

Pe(n) dn , vo>0 (34)
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J j 2[p (l,Z;n)+pnﬁ(—l,-2;n)]dz N
Vo oo (]_ z'n)+pn.(—l,—z;n)]dz Pe(n)dn‘(E[Vﬂ])L: vg> 0 (35)

nalytlcally integrating the numerator and the denominator in Eq.'s
(34 and 35) gives the following results:

J 0 Z[P e 1dz ) D[Qs (1)+Qu (=1) ] 6
Jw ______ 0, Qs(DIBI0G: (1) 1405 (-8 [0Qs -]
j ...... ldz ) D[Qo (1)4Qs (<1) ] a7
J‘f [pnﬁn"n]dz Q3(1)®[DQ1 (1) 1+Q3(-1)3[DQ; (-1) ]
D - 02/2-(-;—77” Q) = £ p(1xm;) ks (38,39)
2 _ pml 2
Q2 () =exply Tz [t + kpf;"j‘},zkEl) + Ry 40)
Qs (®) = exp{Mf—ll [0220% eogey 1} (41)
Qu) = 28 4 L 2T {Qlck) + Qs (108(DQy (k) )} (42)
Qo (k) = M%Q—Z@— 2T 1,200 + £105 2 10Q: (1) 1} 43)
(x) = ‘r_z—;J exp(T) dt (44)

Substituting Eq.'s (36 to 44) and Eq.'s (4) in Eq.'s (34 and 35) can give
E[vo] and sz
0

The denominator in Eq. (23) can be analytically integrated:

® . _ 1 (E[{ () 1)?
J 7oy moiman = ey R o) 43)
where
E[ly(@)] Ely(m)]
Zy= - o_(n) (46)
' %y ()Y 1-05 (n) oy (V0% () T : )1y
Then,from Eq. (23) -l p°(n) (Ely(n
P T, T@e,@ o @ Z2] N
Py(a) §(n) =0(H™" o, @)e1) / zwcl—oytnn “r
where 2
_ (u- [ (€90D) 2E[Y(n)](u—E[Y(n)])
220 T 5, @ o oy uo 8

With substituting Eq.'s (17 to 22) into Eq. (47), and using Eq. (7), one can
integrate Eq. (24) numerically. Then, the mean and the variance of Ay can be
found numerically through pA(u), Eq. (24):

Elay] =f Typ,(v) dy (49)

2
% 7 v, dy - BISD (50)

TOTAL ACCUMULATED ABSOLUTE PLASTIC DEFORMATION
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Different steps generate different Ayi, 1 =1,2,3,t . They are from
the same equations, Eq.'s (11 and 12). Therefore, Ay;'s have identical and
1ndependent distributions (abbreviated to i.i.d.). For the same reason te's
and t_ s both are i.i.d. At time T, the accumulated absolute plastic deforma-

tion D(T) is

N{T)

D(T) = . Ayi (51)
i=

where N(T) = the number of plastic steps in the period (0,T).

N(T) is a delayed positive recurrent renewal process, because the first
elastic step has zero deformation at its initial time, and all the subse-
quent steps have Eq. (25) as their initial conditions.

The correlation analysis shows te and t, correlate weakly to each other.
Furthermore, t, depends stochastically upon Vo, and joint desity of vy and ts
is Eq. (32). It can be said that there is no functional relation between te
and tp. Therefore, t, and t, are approximately independent. Then the mean
and the variance of the durations of a elastic and a consecutive plastic step

ti are

) = E[ti]
¢t = Var[te+tp]

€y

From theories of random processes (Ref. 13), when T is long enough, the
mean and the variance of N(T) are

E[N(T)] = T/u (54)
Var[N(T)] = Gigyps (55)

and probability of (N(T)<j) goes asymptotically to Gaussian as T increases.
For j>10, the density of the duration of the first elastic step has negligible
influence to distribution of N(T). Based on the law of large numbers, D(T) can
become Gaussian asymptotically as j increases. N(T) can be assumed independent
from Ay;'s. Then, the conservative estimators of the mean and the variance of
D(T) are

Eleo] + Blep) (52)
T’] 5

]
t (53)

mnom

E[D(T)] = E[Ay] E[N(T)] (56)
Var[D(T)] = oA; E[N(T)] + (E[Ay])2Var[N(T)] (57)
EXAMPLES

A symmetric elasto-plastic oscillator of SDOF with the natural period
To= 1 Sec. and damping ratio ¢ = 0.04 is taken as an example. The intensity
of the input makes the variance of stationary elastic deformation equal to
a/0.8 and a/0.6, a - yielding level of deformation. Its band-width is from
0.1 to 200 Hz

Fig. 6(a and b) shows the relations of the mean and the variance of D(T)
to dimensionless time T for a,=0.8; Fig. 6(c and d) is for ay=0.6. The range
of the abscessa covers 10 to 25 plastic steps or so. The solid curves are
given by the present method; the dash curves are the simulation results. The
means by the two methods are close to each other. But the variances by the
present method are greater than that by simulation. In Fig.6(a and c), the
dash~and~dot curves are the equal probability curves, i.e. the curves whose
points can be exceeded at the same probability for the results by both the
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present method and the simulation. For the case of a=0.8, the probability is
approximately 10%, and the dimensionless accumulated absolute plastic deforma-
tion is about 1l. Note that D(T) closely relates to the energy ductility
coefficient, and it is much greater than the convenient ductility coefficient.
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