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SUMMARY

An analytical method of probabilistic seismic response analysis of hys-
teretic structures is presented. The structural systems considered herein are
state-dependent hysteretic systems including degrading and stiffening hyster-
etic characteristics. Formulations of the hysteretic systems as well as seis-
mic excitations are presented in the form of first-order ordinary differential
equations. Then, as the augmented state equations of the overall dynamic
system, the It3 stochastic differential equations are derived. The structur-
al responses including the maximum displacements and the cumulative plastic
deformations are approximately estimated by solving the moment equations. The
accuracy of the proposed method is verified against digital simulation.

INTRODUCTION

In evaluating the reliability of structures to seismic excitations, the
structural responses representing seismic safety have to be considered from
the probabilistic point of view. Ekperimental evidence has revealed that most
structures show hysteretic behaviors with degrading or stiffening characteris-
tics for repeated loadings. This paper deals with an analytical method of
probabilistic seismic response analysis of such state-—dependent hysteretic
structures showing degrading and stiffening hysteretic characteristics. First,
by introducing appropriate extra state variables which control the hysteresis,
the state-dependent hysteretic systems are represented by a set of first-order
nonlinear differential equations. Secondly, the seismic excitation is modeled
as a filtered white noise which is the output of shaping filters driven by
Gaussian white noise 1,2). The filter system can be also described by a set
of first-order differential equations. Through such differential formula-
tions, the state space equations of the overall system consisting of the
shaping filter and the hysteretic structure are expressed in the form of the
It3 stochastic differential equatioms. Then, the associated moment equations
are derived and are approximately solved. The maximum displacements and
cumulative plastic deformations which are representative measures in assessing
structural reliability are also estimated. The analytical method is illus-
trated by examples for the bilinear hysteretic-system, Kato-Akiyama's hyster-
etic system 3) and Clough's hysteretic system 4). '

DIFFERENTIAL FORMULATION OF HYSTERESIS

The hysteretic restoring force characteristics of structures could not be
in nature represented by single-valued functions in terms of displacements
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and velocities. Therefore, by introducing appropriate extra state variablesg
the differential formulations of hysteretic characteristics have been proposed
to obtain well-defined mathematical expressions in the form of nonlinear
ordinary differential equations with single-valued functions 5, 6, 7). The
hysteretic characteristics considered herein are bilinear hysteretic model,
Kato-Akiyama's hysteretic model and Clough's hysteretic model.

The hysteretic characteristic ¢ is described by
® = rx + (1-1r)2 M)
where @ is normalized to have a primary rigidity of unity, x is the
nondimensional displacement with reference to the elastic limit deformation,
z is the hysteretic component of the force, and r is the ratio of the
linear part to the total force.

The differential representation of z in the bilinear hysteretic model
as shown in Fig. 1 can be described by 6)

=& [1-U@ U(a=1) - U6d) U(-2-1)] = g_(&,2) @)
where U(x) = 1 for 220, and = 0 for x<0.

The hysteretic model presented by Kato and Akiyama 3) shows degrading or
stiffening characteristics with the cumulative plastic deformation as shown in
Fig. 2. The hysteretic component 2z in Kato-Akiyama's model is governed by a
set of differential equations 7)

2 = 2[1-5 U@ U(z-2]) - sU(=2) U(-3-2))] = g (&,2,n",n) )

.4 - . + _ . +

n =sxUx) U(z-zL) :gn+(x,z,r| ) 0

N = -5z U(-z) U(—z—zz) = gn_(i,z,n') (5)
where zZ =1 +sn'/s, zg =1+sn/s, s=1-35 )

s denotes a rigidity ratio associated with the hysteretic component z. Thus
the state variables n* and n~ govern the state-dependent yield strengths z,*
and 2 of the hysteretic component 2. The one-sided cumulative plastic
deformations N} and N of the hysteretic system in the positive and negative
directions, respectively, are related to n* and n~ by the equations,

+ + - -

Ny = (1-r)n -, = (1-r)n (7
In the particular case where s = 0, Eq. 3 reduces to Eq. 2.

Clough's hyéteretic model is shown in Fig. 3. 1In this model, the
hysteretic component 2 is governed by a set of differential equations 7)

/ i
s
Fig. 1. Bilinear Fig. 2. Kato-Akiyama's Fig. 3. Clough's
hysteretic model. hysteretic model. hysteretic model.
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=20 (AT U@ [1-U(z-1)] +U(=27

+2U-2) {47 D) 1-0(-2- D] + U T 2 2 (o dy5,m .7 ) (8)
v e . .
n =xU@ U1 =g (2,3 (&)
.t . .o n .
n = -xU(-x) U(-5-1) = R CN-)) (10)
where + . + - ) - )
A = (=-2)/0+n -x), 4 = +z)/(+n + &) (11)

The stiffness degrading is governed by the state variables T and "~ introduc-
ed here. These state variables are closely related to the maximum and minimum
displacement responses x; and &, respectively, beyond the elastic limits,

Toten, 1 o T -
. = X = - -n < 2z o < -
xm [ ' L] wo = ] bl = ] (]2)

STOCHASTIC PROCESS MODEL FOR SEISMIC EXCITATION

On the basis that prescribed frequency characteristics of earthquakes can
be produced by passing white noise through a linear shaping filter 1,2), the
seismic excitation j 1is given by

£ o= +

J Y1 v Yzwz . (13)
where, v is the output of a shaping filter driven by a Gaussian white noise.
Specifically the filter is governed by the following equations:

vo=lou,  Lyu =gy (14)
in which i
m gt Z i
L, = Eai_i’ L= 1 5. =, 2, =2.=1, m>1 (15)

[SH

7=0 dc J=0 = .
with zero initial conditions. In the above equations w; and wp are zero—mean
Gaussian white noise processes, Yy, Y2 and Y3 are deterministic multipliers,
and 27 and bj, in general, time-variant coefficients. Eq. 14 is rewritten in
the following matrix form:

r

# e AE N Fio (16)
where u, 0 -1 0 +-+ 0 0
U, 0o 0 -1 = - 0 0
Z= 11, A=-|: :+ 1 |, N= :
Y G % F2 T g 3%y
and u; = dl_1u/dt2_1, Z=1,2, «,mnm
Then, Eq. 13 becomes
T g 8
f—\‘IbEA‘b\sz ( )
h . .
where bT = b4 b1 c+ b, 0+ -0 ] (19)

STOCHASTIC DIFFERENTIAL EQUATIONS

The governing equations for a multi-degree—of-freedom hysteretic
structural system are given by
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Fr AL LD gAI N gl (20)

where _
0 0 1
X 0 - T .
3 : B 0 - |™"1b i N = |TYawal R
5Z - Z] ) SG - gz 2 SEA 0 S 0 .
n ) gn | 0 0 1

In the above equations, X is the displacement vector, Z is the hysteretic
component vector, T is the state vector which controls the state-dependent
hysteresis, and gz and gr are single-valued nonlinear vector functions.
When the input excitation to the structural system is given by Eq. 18, the
overall system is governed by the augmented differential equations

Z=A2+G2) +N, Z . =0 (21)

21w (4] o 5] a2

where

E
Z 0 EA
Since a Gaussian white noise is formally treated as the hypothetical time
derivative of a Brownian motion, Egq. 21 can be rewritten by the Itd
stochastic differential equations of the form:

dZ = F(Z)dt+VvdB, F(Z)=AZ+ G@Z), Zﬁ=0=0 (22)

where V is the matrix of time modulations, and B is vector Brownian motion
with zero-mean and diffusion intensity matrix @, namely

E[dB] =0, E[dBdBT] =94z (23)

The moments M(Z1, 2,",Zn) of the state vector Z are defined by
. - - 2k

Then, the first-order nonlinear differential equations for the moments can be
derived by using Itd's theorem 8) as follows:

M(ZP”’Zn) _z —7,+1F'u,j;" ZJM(Z ’“’Zi—1’."zj—1""z71)
+—;—2£ (T LM, L2, 1) + LT T LELF,q/z;)  (25)
MLy, l), g =0, M(0,,0) =1 28

t=0

where T = WQV s Fij is the 2j element of I', and F; and Z; are the Zth compo-
nents of F and Z, respectively. In particular, the mean vector E[Z] and the
covariance matrix K of the state vector Z are given by

FlZ] =E[FZ)], E[Z] =0 27

K=E[F@)ZI] +E[Z;FZ)T] +T, K, ;=0 (28)

where Zd =7 - F[Z]

In determining the above equatioms, the probability demsity function
p(Z;t) is required in order to define the expectation cperator F in Egs. 25,
27 and 28. However, unlike the cases involving only linear dynamic system
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driven white noise2 the probability density function p(Z;:t) is not of Gaussian
and cannot be.obtélned precisely. Therefore an approximate probability
density function is introduced in the following analysis.

STOCHASTIC RESPONSE ANALYSIS AND NUMERICAL RESULTS

An approximate non-Gaussian probability density fumction of a single-
degree-of-freedom hysteretic system is assumed in the cases of bilinear and
Clough's hysteretic models as

p(Z;t) = p(¥;t) §(n-E[nl) (29)
p(Y;t) = [1-U(z-1) - U(-z=1)] w(¥;2)
+8(z+1) [ w(e, Yy 2} gZ30)de" + 8(z =) [ Twlm,y, ', Zit)ds’  (30)
In the case of Kato-Akiyama's hysteretic model, p(Z;t) is given by
p(Z;t) = p(Z;t) S(-E[nl) (31
pZ;t) & [1-U(z-2p) - Ul-2- 2;)] w(¥;2)

n

1 5_F, 2ol uca 2,5, 4.
+ 3 U(z-zL) w(x,y,g- éZL’EZ’t) * g U(-2 zL)w(a:,y,s+szL,EZ,t) (32)
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(a) displacement response (b) velocity response

Fig. 4. Standard deviations Oy and Oy of bilinear hysteretic system under
stationary Kanai-Tajimi filtered white noise with various Wy values.
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(a) displacement response (b) velocity response

Fig. 5. Standard deviations Oy and Oy of bilinear hysteretic system with
various » values under stationary Kanai-Tajimi filtered white noise.
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where Z8 o[ zyan 2N, Velays 21, y=%

Here, to 51mp11fv the problem, n* and N~ are represented by 7N, since

Zin*] = Z[n7]. w(¥;z) is the normal probability den81ty function with zero-

means and the unknown covariance matrix V. By using the relationship between
K and v, Eqs. 27 and 28 is transformed to simultaneous first-order nonlinear

dlfferentlal equations, with respect to the unknown parameter matrix v, which
can be solved numerically under nonstationary states.

Numerical results obtained by the above-mentioned analytical method are
presented, and they are compared with the results obtained by 500 samples of
digital simulation. Figs. 4 and 5 show the standard deviations Oy and 0, of
the bilinear hysteretic system subjected to the stationary filtered white
noise process through the Kanai-Tajimi transfer function 1), namely

s °, %’ &)
VZ = ,‘-’ R w"A = - 2 , b = S Y1 = U(z ’ Y =0

In these figures 5, is the nondimensional spectral intensity of the white
noise process, % i$ the critical damping ratio and £p is the nondimensional

4 ) / 4
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(a) standard deviation of (b) standard deviation of
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{c¢) standard deviation of (d) mean value of one-sided cumulative
hysteretic component plastic deformation

Fig. 6. Statistics of responses for Kato-Aklyama s hysteretic system
under stationary white noise, r = 0.
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natural period of the system. The effects of the predominant frequency of
excitation and of the rigidity ratio of bilinear hysteresis on the responses
are shown, respectively, in Figs. 4 and 5. In particular, Fig. 4(a) illus-
trates a progressive growth of displacement response, due to the access of
decreasing virtual natural frequency of the hysteretic system to the predomi-
nant frequency of the excitation in the case where w, < 1.

The analytical results of Kato-Akiyama's hysteretic system subjected to a
stationary Gaussian white noise with spectral intensity sy are shown in Figs.
6-8 for the case where » = 0. In Figs. 6(a), (b), (c) and (d) the standard
deviations O, oy and Oz, and the mean value of one-sided cumulative plastic
deformation are shown, respectively, for various values of the rigidity ratio.

Figs. 7, 8 and 9 present the analytical results of Clough's hysteretic
system subjected to stationary Gaussian white noise excitations. In Figs.
7(a), (b) and (c) the standard deviation Oy, O, and 0, are shown for the
cases 2mgQ) = 0.2, 0.4 and 0.6, respectively. %ig. 8 shows the mean value of
N . Furthermore, the mean values of the maximum displacement response for
Clough's hysteretic system are compared with those of the bilinear hysteretic

TTLIN 1
1 1 J—
12 16
52 r =0.‘1 ......
s ) Ox
6‘1 o s gt
S Or Fig. 8. Mean value E[n] of Clough's
o * i hysteretic system,

N

0x,0y,0z

1
tito 16

Fig. 9. Mean value of maximum
(c) 2msy = 0.6 displacement response.

Fig. 7. Standard deviations Ox , Oy and
05 of Clough's hysteretic system under
stationary white noise.

2m80 = 0.2, 0.4 and 0.6

—— Clough's system
--—— bilinear system
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system in Fig. 9. The maximum displacements of Clough’s system are slightly
less than those of the bilinear system for low values of the excitation level,
but they become greater for high excitation levels. This tendencies may be
attributed to the stiffness degrading of Clough's hysteretic characteristics.

The results obtained by the corresponding digital simulation are also
plotted in Figs. 4-8. They are compared with the analytical results to show
satisfactorily good agreement except for the cases of negative rigidity ratio.

CONCLUSIONS

The differential formulation of the hysteretic characteristics such as
bilinear, Kato-Akiyama's and Clough's hysteretic models, is presented. The
differential representation for the constituent elements of seismic excitation
is also presented. From these formulations, an analytical method based on the
stochastic differential equations is presented for computing the transient
responses of the hysteretic systems under random excitations. The results
obtained by the analytical method are compared with the corresponding digital
simulation estimates. It is indicated that the proposed method is efficient in
predicting the stochastic response properties of the hysteretic systems with
degrading or stiffening characteristics. The numerical examples given herein
are hysteretic systems subjected to the stationary filtered white noise or
Gaussian white noise process. The present analytical method can be applied
for evaluating the responses of the hysteretic systems under nonstationary
excitations, if time-variant multipliers and coefficients of filter system are
given depending on the nonstationarity of the intensity and spectral
characteristics of excitationm.
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