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SUMMARY

This paper presents the ways of apllying the Component Mode Method to
the structures constructed of the components which have different dampings.
It is shown that, for such structures whose equations of motion can not be
transformed into the uncoupled form by the classical modes, the component
mode method can give a simple but sufficiently rational treatment. It is
also shown from a simple numerical example how the damping properties of a
total system are related to those of its components.

"INTRODUCTION

Generally in the modal analysis, the damping of a structure is
determined by the coefficients of the classical normal modes of the
structure in order to orthogonalize its equation of motion. This treatment
is reasonable only for structures with the damping which satisfies the
Caughey's condition. Because there are many uncertainties involved in the
damping of structures, such as the effects of ground-structure interactions,
it seems to be acceptable for the purpose of engineering problems to
introduce the damping which is determined for the overall system.

Because, for a structure with distinct damping properties in its
components, the method mentioned above is not available. The direct
integral method and the complex eigenvalue approach are generally used. 1In
this case, however, it becomes a difficult problem to determine the damping
matrix of the structure.

The component mode method has been developed in order to avoid
troubles reldting to the storage capacity and the run time of computers
and to conduct the analysis of each component independently.l’2 The method
is also effectively applied to the analyses of structures with distinct
dampings in the components, since the dampings can be evaluated by the
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component modes which are necessarily calculated in the process of the
method. If the damping of each component is proportinal to the stiffness,
then the modal damping based on the component modes, 'component-mode
damping',can be determined. Accordingly, by introducing the component-
mode damping, it will be possible to perform the reasonable analyses of

such structures.

In this paper, the treatment of the damping using the component mode
method is explained. The treatment of component modes, by which the
damping of each component is determined, and the formation of the damping
matrix, in the process of the component mode method, are shown. A method
to evaluate the complex eigenvalue problems of large size structural models
is shown as well. By a numerical example, using the idea of the component
mode method, the relation between the dampings of a total system and its
components is examined.

TREATMENT OF SUBSTRUCTURES TO ASSESS COMPONENT MODES

The substructure method using component modes, the component mode
method, can be divided into several methods, according to the types of the
adopted component modes. In the dynamic analyses of a structure
subjected to earthquake motions, however, it is necessary to introduce
appropriate components and their modes which can evaluate the dynamic
properties of the structure effectively. In this paper, among the several
types of the component modes, those which are shown by Benfield and Hruda®
are adopted.

In Fig.l, the treatment of components and its meanings are shown
schiematically. In this figure, a structure is modeled to be composed of
three components, a, b, and c¢. By the principle of superposition, the
equilibrium equation (1) of the complete structure is divided into three
equations, (2), (3), and (4). In the divided equations, there are two
kinds of component displacements, that is, displacement which generates
restoring force in the corresponding component and displacement which does
not generate such force. In this paper, the former ones, xé, xﬁ, and x¢,
are said to be_'independent displacements'. From the independent
displacements X, the relative displacements X of the structure can be
determined uniquely as shown in Eq.(5). The meaning of transformation
matrix R, which relates X to X, and its formation are made clearer to
consider the fact that the block LDLY factorization of K matrix can be
performed by R as shown in Eq. (7).

Because, the restoring force with deformation of a certain component
is generated only by the corresponding independent displacement, the
component modes which can represent the deformation properties of the
component sufficiently must be determined for such a displacement.
Accordingly, if the proportinal damping to the stiffness is considered, the
independent displacement will provide a proper coordinate to evaluate the
damping of the component.
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MK AND MCK TYPE EIGENVALUE PROBLEMS BY THE COMPONENT MODE METHOD

In Fig.2, the flow chart to solve the MK type and MCK type eigenvalue
problems by means of the component mode method is shown.

At first, the physical coordinates X of the equation of motion (1)
are transformed by the matrix R. By the transformation, while K becomes
block diagonal, coupling relatioms occur in the mass matrix M. As
explained in Fig.l, the coordinates X stand for the independent
displacements of each component, only by which restoring forces are
generated in the component. Because the eigenvalue analyses of individual
components are performed for such independent displacements, obtained
eigenvectors,¢,, ¢, and ¢., represent well the deformation properties of
the components. If the components are introduced to represent well the
deformation properties of the structure subjected to earthquake motions,
then the behaviors of the structures can be sufficiently approximated by
the first several component modes. Furthermore, by selecting necessary
component modes and/or by introducingthe Wilson-yuan Ritz vectors, a
small number of fundamental component modes, which express the properties
of each substructure efficiently, can be determined. Accordingly, by such
formed matrix @, it is possible to reduce the degrees of freedom of the
total system to a sufficiently small but meaningfull size.

By a coordinate transformation by the block diagonal modal matrix 9,
Eq.(3) is transformed into the Eq.(5). In Eq.(5)', K* is a diagonal matrix
composed of the eigenvalues of each component. and M* is a matrix which is
coupled by the transformation. From M*, information on the coupling
relation of component modes between different components can be extracted.
For example, from a block matrix ¢§5aatabtbc¢c’ the mass orthogonality
relation between ¢, and the deformation mode tabty Pc in substructure a,
generated by ¢, in substructure c,can be examined. It is possible to think
that this mass orthogonality relation represents the participating effect

of ¢. on ¢a.5

Because component modes ¢, ¢, and ¢, are determined for the
independent displacements, that is the relative displacements which produce
restoring forces for each corresponding component, the proportional damping
to the stiffness can be appropriately introduced by the component modes.

In Fig.2, C* is determined as the component-mode dampings, which are modal
dampings concerning components. For the structures composed of several
components with different proportional dampings, it is quite rational to
introduce such a damping matrix C*, as is determined in the generalized
coordinate, introduced by the component mode method. If the damping of the
structures is considered as the Rayleigh damping, then C* becomes the form
oM*+8K*, in which o and B are arbitrary proportionality factors.

By the coordinate transformation shown in Eq.(4), the degrees of
freedom of Eq.(5)', can be reduced to a small size. Therefore, the sizes
of M*K* type and M*C*K* type eigenvalue problems are sufficiently small
and their executions become quite easy. The resulting modal matrices U and
U~ are the solutions of MK type and MCK type eigenvalue problems of the
total system of a large size. Accordingly, by means of the component mode
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method, the large size complex eigenvalue problems of structures with
nonproportional dampings can easily and rationally be executed with the
procedures shown in Fig.2.

A SIMPLE EXAMPLE TO EVALUATE THE DAMPING OF THE GROUND-STRUCTURE
SYSTEM BY THE COMPONENT MODE METHOD

It is quite a difficult problem to assess the real damping properties
of structures, because there are many uncertain factors affecting the
damping. In general, the modal damping of structures with fixed foundations
is said to be less than 0.0l and the value becomes greater according to the
increase in their interactions with grounds.7

In Fig.3, the variations of the lst modal damping coefficient h, of
the ground-structure systems, with the change of the degree of the
interactions are simulated. As shown by Eq(l) in the figure, the systems
are modeled as two degrees of freedom systems, in the generalized coordinate
defined by the component mode method. In Eq.(1l), hs and hg are ' component-
mode dampings', and are assumed to be 0.0l, for the structure components
with fixed interfaces, and 0.1, for the ground components.

In the figure, two parameters, My and o,are introduced to represent
the degree of the ground-structure interactions. As shown in the figure,
My represents a modal coupling between ¢S and ¢,, and also represents the
ratio of the masses, mgg and my,, in the case o% two mass—-spring systems.
If My=0, then mgo tends to be Infinity, and the lst modal damping
coefficient h of the total system tends to be hg. On the other hand, a,
which reveals the ratio of the lst natural frequency ; of the total
system, to the lst natural frequency wg of the structure component,
provides information on the stiffness relation between two components,i.e.,
structure and ground components. If a=1, then Wg=co. This means that the
ground is perfectly rigid and that h is equal to hg. If a=0, then wg=0.
And this means that the ground is flexible and that h tends be the value
of h

g

From the above, it follows that the variation of h, due to the change
of ground-structure interactions, can be well simulated by the parameters
My and 0. For example, the increase in the ground mass m__, which results
in the smaller My, gives the greater deviation of h from ﬁg, and the
decrease in the stiffness of ground, which result in the smaller o, and
also gives the greater deviation of h from hg.

By the consideration of the modal damping of the simple two degrees
of freedom systems, the relation between the dampings of a total system and
its components is well explained. On the other hand, the meanings of the
generalized mass M*, coupled by the transformation of the component mode
method, are also clarified.
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Equation of motion in generalized coordinate (subscripts s and g mean structure and ground respectively)
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Fig.3 Variation of the modal damping h of total system
with the parameters o and Mg which are obtained
from the component mode method
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CONCLUSIONS

This paper presents the ways of applying the component mode method to
the structures with different damping properties in their components. The
following conclusions are obtained.

Based on the component mode method shown in Fig.2, it will be possible
to execute the eigenvalue analyses , including the complex eigenvalue
problems of a structure with large degrees of freedom. Furthermore, in the
process of analyses, the interactions between the components of the
structure can be understood as the coupling relation of the component modes.

The generalized coordinate introduced by the component mode method is
based on the independent displacement, by which only the restoring force
with deformation is generated in the component. Therefore, it is
rational to determine the damping, which is stiffness proportional in each
component, in the generalized coordinate.

In a simple numerical example, the relation between the dampings of a
total system and its components is sufficiently explained by the parameters
introduced by the component mode method.
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