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SUMMARY

The nonclassical normal mode approach for dynamic response of structures
is applied to vibrational test data of an arch dam using system identifica-
tion techniques. Due to the effects of foundation and reservior interaction,
the actual behavior of an arch dam may not be modelled truthfully by a
proportional damping assumption. However, classical mode results are also
included for comparison. The mnonclassical mode results give a better fit
to the test data. The present study indicates the feasibility of using
nonclassical modes in structure identification problems. Based on the
requirements of structural identification, recommendations are made on the
suitable way of dynamic testing.

INTRODUCTION

The effects of nonproportional damping have been studied by several
researchers before, Refs. l1-4. Bounds on damping matrix were established
if the effects of nonporportional damping are to be neglected, Ref. 5.
While most structure behavior can be modelled by proportional damping with
subsequent benifit of using the simple classical mode solution approach,
structures with pronounced foundation interaction effect may have to be
modelled with a nonproportional damping matrix that necessitates the use
of nonclassical normal mode formulation if the advantage of mode superposi-
tion is to be retained, Ref. 6.

In the course of studing the dynamic behavior of an arch dam, Ref. 7,
it is found that the classical normal mode model may be used to obtain a
general understanding of the dynamic characteristics of the dam. Closer
inspection of the steady-state test data, Ref. 8, indicates that phase
lag between dam crest radial displacement responses exists. This phenome-
non can be explained by the effect of model interference and/or non-
classical normal mode behavior. Thus it is interesting to examine whether
the test data can be explained by the classical normal modes alone or the
nonclassical mode model gives better explanation.

In the following, the nonclassical normal mode formulation for dynamic
problems is reviewed and basic equations rederived to fit the purpose of
structure identification. The equation for nonclassical modes can also be
reduced to that for the classical mode as indicated later. Thus the
identification can easily be carried out for both models. The arch dam
test data is used and results compared and discussed.
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BASIC EQUATIONS

The conventional equations of motion for a N-DOF system,
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can be put into the following first order form, (Ref. 9)
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Assuming z = edt@ for the homogeneous solution of Eq.(2), the following
eigenvalue problem of order 2N is obtained.

cR3+G2=0 (4)
There exist 2N eigenvalues o and 2N eigenvectors Qn
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The eigenvectors are complex conjugate pairs if the eigenvalues are pairs.
For nonhomogeneous solutions, a modal superposition approach can be
used,

z=2¢2 vy (©) (6)
The modal equations, using orthogonality of the eigenvectors, is then,
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For the present formulation, the forcing function is periodic, i.e.,

F(t) = £ olwt
and the solution for q, obtained from Eqs.3,6 and 7, is
ol f iwt
q = ) gn -?—nt..___ e (8)
~ (Lw— n)Rn

The eigenvectors ?n consist of real and imaginary parts,

Qn = Qnr + iQni
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The complex eigenvalues can be expressed in terms of equivalent natural
frequency w, and equivalent damping ratio .

The complex coefficient Ry can also be represented by its real and
i?aginary parts Rpy and Rpj. After lengthy but straightforword substitu-
tion, the real part of the displacement response, due to the nth mode, can
be put into the following form

q, = Ap {( Py Wy +P3 Wy ) Coswt + ( PiW3 + PoWy) Sinwt} Qnr +

<1
9
An {(P; Wy - Py W; ) Coswt + ( PiWy ~ PoW3) Sinwt} d)ni
where ”
Py = 2( §Lif + d 9kt )
P2 = 2(dy97sf ~ darf )
Wy = wE, (W + wh)
= 2 2 2
W2 = wp (0= w)) V1 -w]
- 2 2
Ws =w 0 -l (1-282)
Wy = -2uwdE, vV 1-&2
Ay = Bpi{( 1+ a7 ) {CuwP of )% 4l - g1
and

dp = Rar / Rpj

Eq. (9) is the nonclassical normal mode representation of the displace-
ment. The classical normal mode representation can be easily obtained from
Eq.(9) by letting ¢pni=0, R =0 and P1=0. After some manipulation, the
familiar modal solution is reproduced.

AT 2_,.2 _ ;
4 = ( Qgrg ) (W=wp) coswt - 2w & sinwt bar (10)
n ( w2- w2 )%+ ( 2wpEy )2

SYSTEM IDENTIFICATION

Egs. (9) and (10) can be used to identify natural frequency and
damping ratio from frequency response curves obtained in steady-state
forced vibration tests of a structure. They can also be used to identify
mode shapes if response amplitudes and phase angles of enough points
of a structure are obtained from steady-state tests.

In the present application, the test data of Techi arch dam, (Ref.8)
is used. The dam is 180m high with a crest length of about 290m. A
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thorough dynamic test, consisting of ambient and steady-state forced
vibration tests was carried out in 1969 by a Berkeley team with the
assistance of the personnel from the National Taiwan University. Details of
the dam and the test results were summarized in a report, Ref.8. It
suffices for the present purpose to indicate that fifteen measuring stations
on the crest was used to record responses from forced vibrational tests.
Symmetric and antisymmetric periodic forces were applied at stations 7 and
10, Fig.l. Frequency response data points were obtained and system
identification was carried out assuming classical normal modes, Ref.7.
Reasonably good fit was obtained, although there were certain discrepencies
left unexplained. It was determined that the first five modal frequencies
are 2.69, 3.29, 4.62, 4.97, and 5.61 Hz, and the corresponding modal damping
ratios are 0.035, 0.041, 0.095, 0.041 and 0.052, respectively.

In trying to determine the crest mode shapes, it is assumed in the
present study that these frequencies and damping ratios are approximately
accurate, to make things easier. Only the radial crest displacements are
to be determined using measured radial displacement amplitude and phase data.
To reduce the number of parameters to a manageable degree, it is further
decided that only a representative three-point data from first three tests,
with forcing frequencies at 2.65, 3.23 and 3.26 Hz, is used for fitting, (see
Table). Since relative phase exists between responses of different points,
the error is defined as the square of the vector difference bdtween the
measured and calculated displacements summed over the three points and three
tests.

Both classical and nonclassical normal mode models are.used based on
Egqs. 10 and 9 respectively. For classical normal mode model, each mode
assumed involves three unknown parameters, the my and the two modal displace-
ments normalized with respect to a unit first modal displacement. Also, a
common factor can be eliminated from Eq.10. Thus the number of unknown
parameters is three times the number of modes less one. On the other hand,
the available testing data as displayed in the Table consists of a total
of fifteen numbers, i.e., five from each test. Thus up to five modes with
forteen parameters can be included for data fitting. A gradient search
method is used for the minimization of the error. It is found that not
until the five modes are used, the errors are rather too large. Only the
last two, i.e., the four-mode and the five-mode model results are listed in
teh Table.

For the nonclassical mode model based on Eq.9. each mode consists of
seven parameters, three imaginary displacements and two real displacements
normalized with respect to a unit real displacement plus dp and Rpj-

Again a common factor can be eliminated. Thus a total of thirteen parameters
is associated with a two-mode model. The results for the two-mode model
are listed in the last line of the Table.

The five classical modes and the two nonclassical modes obtained are
shown in Fig.2. The calculated response amplitude and relative phase
are shown in Fig.3 together with the measured onmes.

DISCUSSIONS

It is seen from the above results that a two-mode model in the non-
classical approach gives better explanation to the test data than a five-
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mode model in the classical approach, in the sense of better curve fitting.
Alsc the testing frequencies are clustered near the first two natural
frequencies determined from previous studies, Thus a two-mode model seems
to be more resonable than a five-mode approach. However, since an additional
imaninary part is included in each nonclassical mode, a two-mode model is
really equivalent in number to a four-mode model of the classical approach
in terms of mode shape determination. Thus, it can not be concluded, from
the numerical evidence alone, that the nonclassical mode approach is the
better one for the present problem. However, consideration of foundation—
dam interaction has lead to the conclusion before, Ref.3, that nonpro-
portional damping effect can not be neglected. Therefore it is reasonable
to conclude that for the present test case, where foundation-reservior-dam
interaction compounds the damping problem, the nonclassical mode approach
offers a more reasonable explanation to the test data.

Concentrating on the nonclassical results now, Fig.3 and the Table,
it is obvious that the remaining error may be attributed to the influence
of the third and/or higher modes. The inclusion of higher modes in the
identification process would require the inclusion of tests at other
forcing frequencies. In the present application, only higher frequency
testing data are available, which in turn would require additional modes.
Thus, it becomes clear that more tests at lower frequencies are important
to the identification process. This is quite a departure from the common
practice in testing, when only tests at frequencies close to the estimated
natural frequencies are performed. Also, the phase lag between the excit-
ing force and response is a valuable information and should be recorded.
It is felt that the present study has indicated the possibility of utiliz-
ing both amplitude and phase data in the process of structure identification.
Such a procedure may be the only way of identifing mode shapes for structure
with closely spaced vibrational frequencies.
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Table. Relative amplitude and phase of displacement responses

Test 1 Test 2 Test 3

s7 | sto | si1 | s7 ]| sio |siI s7 | s10 | il | Err.
0.343]1.000]0.737|1.000]0.733 [0.396 | 1.347]1.000]2.209

Mes. | 163.9/0.0 |5.0 [0.0 |-72.6-126.7|-152.6]/0.0 [43.6 |-——-
0.461]0.983]0.669]0.806]0.722 0.622 | 1.437|1.035[2.126

4M-Cl 164 7/0.0 |15.5 |0.0 [-55.5|-124.5|-155.3/0.0 |39.9 |0.208
0.296|1.006|0.7360.819]0.722 |0.628 | 1.436|1.034|2,132

MC| 166.6]0.0 |15.4 (0.0 |-61.1|-127.6]-152.8/0.0 [42.3 |0.146
0.407|0.904]0.789]0.914/0.799 |0.449 | 1.393]1.013|2.173

ZMN) 140 .8l0.0 [15.7 (0.0 |-69.9|-133.3]-151.1{0.0 [43.1 |0.078

EXCITING
FORCES

Fig.1 Plan of Techi dam showing recording
and exciting stations (Ref.8)
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Fig.2 Calculated classical (L) and nonclassical (R) modes

409



meads. ———2-M-N —-5-M-C

L

Test 1

@ ©
Test 3

Fig.3 Relative amplitude and phase of radial displacements
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