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SUMMARY

The modal superposition method is widely used for the analysis of
structural response. The standard method uses the undamped eigenvalue
solution. The undamped natural modes are superposed to give the res-
ponse to arbitrary excitation time histories or spectra. For small
damping and for proportional (Rayleigh) damping this is a satisfactory
approximation.

In the case of essentially non-proportional damping the damped
eigenvalue solution leads to more accurate results. Moreover it gives
the reliable possibility to optimize the effect of dashpots externally
built into the structure to control its dynamical behavior. This is
of practical interest not only for the design of new structures (e.g.
seismis isolation) but also for the reconstruction of the old ones.

INTRODUCTION

The structural response analysis of elastie structures under diffe-
rent dynamical excitations such as earthquake ground motion, aircraft
impact, driving vibration etc., generally is performed by the modal su-
perposition method. There is a nice feature of the modal superposition
method that by knowing the natural frequencies and modes the structure
becomes dynamically evident, independently of the type of excitation
applied. This enables the engineer to design the structure in such a
way that the natural frequencies of the structure lie outside the es-
sential spectral content of the excitation.

The modal superposition method allows without great loss of accura-
ey to reduce the number of DOF (degrees of freedom), which is originally
very high in the most practical cases, to a small number of essential
natural modes. This is an obvious computational advantage.

Consequently, once the eigenvalue problem for a structural system
is solved the response to any type of excitation can easily be found
by little computational effort using always the same few natural modes.

Consider the governing differential equation of wvibration

M;F + Cr + Kr =D N
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At the present state of the art the modal superposition method in-

volves the solution of the undamped eigenvalue problem
2

W™ M+ K)x=20 (2)

where w denotes the unknown circular frequency and x the corre§ponding
natural mode. The damping is then added to this solution leading to

an approximation of the damped problem.

This approximation is good enough in the following cases:

- if the damping is small or ) o
- if the damping is nearly Rayleigh (proportional) i.e. it is of the form

Cx oM+ BK (3

(Ref. 1).
In the design of nuclear power plants there are many cases in which

the structure comprehends an essentially non-proportional damping. Such
damping can either be inherit by the nature of the structural system
(e.g. soil- structure interaction) or is given from outside by means of
point-dashpots (examples are seismic isolation of the reactor building
on helical springs and dashpots, or point-dashpots for design of pipes
ete.).

The task of the design engineer in the first case is to verify if
the peak values of dynamical stresses are less as permitted without
changing the structure. In the second case there is the posibility to
reduce the dynamic response. The effect of damping can be optimized
by appropriate location of point dashpots and selection of their damp-
ing characteristics. For both tasks - verification and (or) optimiza-
tion - it is necessary to solve the quadratic eigenvalue problem

Mw® + Cw +K) x =0 €
subordinate to the eq. (1), where now C is neither "small" nor Rayleigh.

At the first glance it is theoretically possible to solve (4) by
"direct™ computation, which is exhausting already in the case with two
or three DOF, Ref. 2. It is easy to see that under assumptions on C
made above the solution of the quadratic eigenvalue problem is essen-
tially complex, i.e. the eigenvalues and modes are complex. (In over-
damped modes the solution is "double" real, but these modes give no con-
tribution to the steady state solution. However they may be relevant
for local design of dashpots.)

The procedures available have all some of the disadvantages like

the loss of symmetry or (and) bandwidth in structural matrices and ge-
nerally they include the complex arithmetic. This causes an increase
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in the computer time or (and) computer storage, i.e. generally an in-
crease of the computer costs. Some of the calculations become impos-
sible at all.

This paper presents the new method for the solution of (4) and its
effect on structural response analysis for strongly non-proportional
damping.

Several other papers are concerned with the treatment of (non-pro-
portional) damping in the computation of structural response, such as
Clough, Mojtahedi /3/, Duncan, Taylor /4/, Novak, El-Hifnawi /5/,
Traill-Nash /6/, Tsai /7/ and Warburton /8/.

DESCRIPTION OF THE METHOD

Let us modify the problem (1) by the use of substitution

y = Lgr
T T _ -7 -T
Ly L1 z=y+L; C Ly (5)
M=L§L2
T (Cholesky)
K=L1L1

The new system is now
AN y

2 2 2 1 1)

where

It has the double size and the symmetry is lost. Nevertheless
there is another type of symmetry of (7) called "J-symmetry", Ref. 9.
The matrix A in (7) is of type

_ A B 8
A= (_BT b > (8)
where A and D are symmetric. It has the property that
JAJ = AT 9)
with
I 0
J = (10)
0 -I

I being the unit matrix of order n.
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There is an obvious storage advantage of J-symmetric matricgs in
comparisson to general (2n) x (2n) matrices: it needs roughly 2n stor-
age which is about half as for a non J~symmetric case.

Tn addition the use of the real arithmetic reduces the storage
for another half.

Let us shortly review some of the properties of the J-symmetric
matrices, Ref. 10. There is an analogous of orthogonal matrix in terms
of the J-orthogonal defined by the property

v =g Ul (11)

J being the matrix in eq. (10). It is easy to verify that if U is
J-orthogonal the similarity transformation

A —> U AT (12)
preserves J-symmetry. This is an important fact for the diagonalization
procedure.

The most important result is concerned with the decoupling of the
system (6). A "brutal" diagonalization of the matrix A would cause in-
troducing complex arithmetic. The corresponding complex natural modes
would have no kind of orthogonality property which would itself destroy
J-orthogonal structure of the iterates of A.

Therefore the new method uses a sort of "block-diagonalization
the big matrix A, which is enough to evaluate the damped eigenfrequen-
cies and corresponding real modal dampings.
DAMPED MODAL ANALYSIS
Without going into technical details let us now assume the big ma-
trix A to be block-diagonalized by the J-orthogonal T and that all modal
parameters are known.

Transforming the coordinates in (6) by
v\ _ u
(z} =T (v} (13)

where u and v are time dependend u-vectors the equation (6) changes to
ul _ o« pY\ fu g
1= (5 el (5) - (8]

g 1 /o
T & ~T (15)
h L1 pl.
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For each k there is an explicite solution of {14)

t ()
(:ﬁ gtg) = exp (A t)[( Zk\ + [ exp (-A T‘/g' \dc 1(18)

0 \ 1 (©) } :
where e P
Ak i} ("(sk Y‘x\

and ¢ are constants depending on initial conditions. It is easy
to construc% the explicite formula for exp (A, t), which then inherits all
the characteristics comming from the overdamped, underdamped or critical-
ly damped natural modes.

Knowing vectors u and v the final result for structural response
is given by the expression

S
r(t) = L] 1{_1 (w (8) .ty + () ot ) (7

where L, is given by (5) and ti denotes the first n components of the
i-th column in T. The summation bound s takes care of the fact that
normally only a few frequencies (smallest s frequencies) are essential
for the dynamical response, s <n. The rest of them can then be neg-
lected for calculating r(t), ef. also Ref. 6.

EXAMPLE

The example illustrates the new method. A simple mechanical sys-
tem consists of a bending beam supported by a pair of spring-dashpots,
Fig. 1. The point-dashpots give rise to strongly non-proportional
damping in the system.

In Fig. 2 the new method is compared with the classical solution by
the use of (undamped) modal analysis. The uniform material damping is
set 0.02. In the classical approach the dashpots having the damping cha-
racteristics ¢ = 20 kNs/m are replaced by "equivalent™ springs having
stiffness k = 200 kN/m. As a comparisson a 2/3 weaker dashpots
(ec = 13 kNs/m) are considered additionally. The vertical response at
the point A of the beam is calculated due to the vertical support exci-
tation by pure sine time function at the eigenfrequencies.

In Fig. 3 the modal parameters of the first five natural modes
vs. the variation of dashpot characteristics are presented.

CONCLUSION
The important fact is that the new quadratic solver is of the
same order of effort as the classical procedures. It can therefore

be seen as a possible branch-point in the classical approach to the
natural mode analysis.
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