APPROXIMATE ANALYSIS OF EARTHQUAKE RESPONSE
OF IMPACTING STRUCTURES

R. K. Miller (I)
M. A. Heidari (II)

Presenting Author: M. A. Heidari

SUMMARY

An approximate technique for determining the peak earthquake response of
an impacting structure is presented. The method provides a reduction in
required computational effort of more than two orders of magnitude over that
required by direct numerical simulation. Furthermore, the peak nonlinear
response is estimated directly from a linear response spectrum, without
requiring the complete time history of the excitation. An evaluation of the
accuracy of the approximate response is presented in a comparison of approx-—
imate and exact solutions for an ensemble of 531 earthquake eucitations.

A multiple linear regression model for the error is presented and used in an
example of probabilistic design.

INTRODUCTION

The evaluation of the earthquake reliability of power plants, mechanical
equipment, and some building structures often requires consideration of the
effects of impact between adjacent structures. This vibroimpact may occur
at a seismic joint between subsections of a large building, between separate
but adjacent pieces of mechanical equipment in a power plant, or between
piping systems in an industrial facility. Because of the strongly nonlinear
nature of dynamic impact phenomena, the analysis of vibroimpact can be quite
tedious and/or expensive by existing numerical procedures. Such procedures
are usually based on direct integration of the nonlinear equations of motion
of the system (Refs. 1 and 2), although for some simple systems an exact
analytical solution is feasible (Ref. 3) for harmonic excitation.

Presented in this paper is an approximate technique for determining the
peak earthquake respomse of an impacting structure. The method is based on
an extention of a recently developed weighted equivalent linearization tech-
nique for asymmetric nonlinear structural vibrations (Ref. 4). The essence
of the method is to define an equivalent linear stiffness and damping coeffi-
cient for the nonlinear system, and then solve the resulting linearized
problem to obtain an approximation to the nonlinear respomse.

APPROXTMATE ANALYSIS PROCEDURE

Consider the base excited SDOF oscillator constrained on one side by the
elastic barrier of stiffness K as shown in Fig. 1(a). The barrier is sepa-
rated from the oscillator by a gap of width d when the system is at rest.

Due to the one-sided nature of the barrier, the vibratory response x(t) for
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sufficiently large earthquake base excitation is typically as shown in
Fig. 2, as determined by direct numerical integration of the equations of
motion. Note that the negative peak values of x are much larger than the
positive peak values since the system is unconstrained on the left.

Now consider a linear comparison system with equivalent linear para-
meters ke and ¢, as shown in Fig. 1(b). Since the barrier is nondissipative,
we choose

c, = ¢ (1)

However, let ke be chosen as (Ref. 5)
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where E [.] represents the mathematical expectation operator, Xy is the
absolute value of the local peak respomnse, fx(xm) is the probability density
function for the response peaks, Xp., is the global peak response during the
earthquake, and ky(x;) represents the equivalent linear stiffness for the
problem with harmonic base excitation. Let ky(xp) be obtained from the
weighted equivalent linearization procedure (Ref. 4) wherein the weighting
function is chosen such that the approximate and exact backbone curves

for free vibration coincide at all amplitudes of vibration. Then it can be
shown that
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A statistical analysis of the local response peaks %Xy (obtained from
direct numerical simulation) for several earthquake excitations produced a
histogram for x, similar to the one shown in Fig. 3. Motivated by the shape
of the histogram in the figure and by a desire for mathematical simplicity,
the'probability density function fx(xm) was chosen as parabolic in xy. The
equivalent linear stiffness ke was then obtained by substituting the para-

bolic fy(xp), together with ky(xp) from Eqs. (3) and (4), into Eq. (2) and
evaluating the integrals.
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The approximate solution for the peak response is then obtained by
requiring the maximum potential energy stored in the system at the global
peak displacement xp,y, to equal the maximum kinetic energy achieved by the
mass during the earthquake. This may be expressed as (Ref. 5)

kx 2 = —;- m {svwie/m)]z. (5)

max

NI

where SV(w,) is the spectral velocity determined from the linear response
spectrum for a system with natural frequency w, and damping coefficient c.
This equation is implicitly a transcendental equation since ke is a function
of X,y through Eqn. (2), and it may be rewritten as

x = sv(/i;/_m)//ﬁi. {6)

ma

The solution of Eqn. (6) generally requires an iterative numerical approach.

Scaling of Earthquake Accelerograms

Since the transient impact behavior of the system is highly nonlinear,
it is necessary to scale the earthquake accelerograms in order to minimize
the statistical variations in the accuracy of the response caused by differ-
ences in the amplitude and frequency content of the various earthquake
accelerograms. In this study each earthquake accelerogram was characterized
by a characteristic frequency w* and a characteristic amplitude a* determined
as follows:

fmmax 2 mmax
29 w SV (w)dw wSV (w)dw
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where Wp,, represents a preselected upperbound on the natural frequency of
structures under consideration. Note that these accelerogram scale factors
are dependent upon the first and second moments of the response spectrum
SV(w) vs. @w. Typical values of the scale factors determined from Egqs. (7)
for a subset of the ensemble of earthquakes used in this study are shown
in Table 1.

Parameter Studies

Comparisons between the exact (determined by direct numerical simulation
of the equations of motion) and approximate (determined by the method out-
lined above) peak earthquake response X, for an ensemble of 51 earthquake
accelerograms were obtained for a set of parameters which included three
different values for the nondimensional parameters (K/k), (ma*/kd), and
(w*/vYk/m). Presented in Table 2 are typical numerical results obtained in
the parameter study for the case when (K/k) = 100. Due to space limitationms,
only a small subset of these studies can be presented here.

A primary objective of the parameter studies is to evaluate the accu-

racy of the approximate solution for engineering purposes. Thus, a statis-
tical analysis of the errors in the approximate solutions was performed.
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Statistical Evaluation of Errors

Shown in Fig. 4 is a typical histogram of the error in the approximate
response Xp,y fOr an ensemble of 51 earthquakes for a single set of para-
meters, where the error ¢ is defined as

max max (8)

where xmgx is the exact peak response and Xxp,, is the approximate response.
As shown in the figure, the approximate response is sometimes conservative
and sometimes nonconservative, but with an average ue which is much smaller
than the standard deviation O+

Presented in Table 3 are the means and standard deviations of the error
€ and the absolute error |e| over the ensemble of all 51 earthquakes and
all nine combinations of the parameters (w*/vk/m) and (ma*/kd). Thus, each
row in the Table 3 represents the results of a total of 459 simulations.

Significant statistical variation in the error is associated with the
accelerogram scale factors a* and w*. To facilitate the construction of
quantitative probabilistic estimates of the error in the response prediction
Xmax> @ multiple linear regression of the error € was performed. The factors
considered in the regression model were (ma*/kd) and (w*/vk/m). The expected
value of the error was modeled as

E[e] = C_ + C (*/Vk/m) + C,(ma*/kd) (9

where C,, C;, and C, are regression coefficients. Shown in Table 4 are the
values for these coefficients for three different stiffness ratios obtained
from an analysis of the ensemble of responses to 51 scaled earthquakes.

The regression analysis was based on the assumption that the variance of

is independent of a* and w*. Also presented in Table 4 are the values for
sg, the statistical variance about the constructed regression line.

Required Computational Effort

The CPU time required to obtain the response for each member of the
ensemble was evaluated for both the exact and approximate analysis. These
times are a rough measure of the computational effort required to obtain
the response by each technique. The CPU times were then statistically
analyzed, with the results that for the exact analysis the mean time required
was 1230 sec with a standard deviation of 690 sec, while the mean time
required for the approximate analysis was 6.5 sec with a standard deviation
of about 1 sec. Thus, the approximate method was found to reduce the
computational effort by nearly a factor of 200.

EXAMPLE APPLICATION INVOLVING PROBABILISTIC DESIGN
The approximate response X and regression results for the associated

error € may be used to construct an iterative design procedure based on the
probability of exceedence of a predetermined upperbound X. A flow chart
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for the procedure is given in Fig. 5. The design problem consists of selec-
ting the necessary barrier stiffness K in order that the probability P that
Xpax > X does not exceed an acceptable level P,.

For example consider a system with known mass m, stiffness k, damping
coefficient c, and gap width d, subjected to an earthquake with known
response spectrum, and hence known a* and w*. For simplicity let w*/Vk/m = 1
and (ma*/kd) = 5 and choose the earthquake to be the accelerogram from the
Kern County earthquake of 1952, S69E component. Furthermore let P, = 0.2
and (X/d) = 8. Then, choosing an initial guess of (K/k) = 30 one finds that
(%p/d) = 5.44 and the estimated exact response (xp§x/d) has mean 6.85 and
standard deviation 1.70. Assuming a Gaussian distribution, the estimated
probability of exceedence is P(x;§,>8) = 0.25, which is not acceptable.

So, on the second iteration, a stiffness ratio of (K/k) = 100 is selected,
and the corresponding probability of exceedence is then found to be 0.22,
which is still not acceptable. Finally, on the third iteration, a stiffness
ratio of (K/k) = 150 is selected, with the result that the probability of
exceedence is 0.20, which meets the required criteria, and the design is
complete. An independent evaluation of the exact response (xp5y/d) = 7.27,
which indeed is smaller than X = 8, as required.

ACKNOWLEDGEMENT

This research was supported in part by a grant from the National Science
Foundation.

REFERENCES

1. Shizuo, S. (1974). "Earthquake Caused Collision of Adjacent Buildings,"
Japan Arch. Soc. Trans., Vol. 221, pp. 1-7 (in Japanese).

2. Wolf, J. P., and Skrikerud, P. E. (1979). 'Mutual Pounding of Adjacent
Structures During Earthquakes," Trans. 5th Int. Conf. on Struc. Mech.
in Reactor Tech., Berlin, Paper K8/9.

3. Miller, R. K. (1980). '"Steady Vibroimpact at a Seismic Joint Between
Adjacent Structures," Proc. 7th World Conf. on Earthquake Engrg.,
Istanbul, Turkey, Vol. 6, pp. 57-64.

4. Miller, R. K., and Fatemi, B. (1983). "An Efficient Technique for the
Approximate Analysis of Vibroimpact,” J. Vibration, Acoustics, Stress,
and Reliability in Design, Vol. 105, pp. 332-336.

5. TIwan, W. D. (1978). '"The Earthquake Design and Analysis of Equipment
Isolation Systems," Earthquake Engrg. Struc. Dyns., Vol. 6, pp. 523-534.

367



TABLE 1

Accelerogram Scale Factors

Earchquake a* (g) ~* (rad/sec)
Imperial Valley J.334 4405
L3.0 (SIQE;
3.203 32.6
0.:82 35.5 i
Borrege Moumtain | 9.0272 8.6
1958 (SPIW)
Long 3each 0.163 39.5
1933 INBIW) | i
TABLE 2

Response Peuaks

Parameter Studies for Exact and Approximate

PEAK RESPONSE (X, /d)

K/k = 100
ok * *
S ma” ma ma®

EARTHQUAKE T ) o= b
EXACT APPROX. EXACT APPROX. EXACT APPROX.
Imperial Valley 1 5.5787 4.1563 4.9892 4.8380 5.8731 5.1523
1940 (SPYE) 2 5.2921 L2189 6.4713 6.0359 8.2813Yy 6.9049
3 6.9717 5.3760 9.4887 6.3370 11.0355 7.9013
Kern County 1 6.4709 5.2076 9.3198 5.8978 10.048Y 6.4856
1952 (SBYE) 2 7.9989 8.2113 9.2244 9.8013 10.4854 11.7313
3 9.1093 9.0717 10.3745 11.6686 11.3055 13.7193
Eureka 1 6.7320 5.7792 7.9029 6.426 10.3115 7.0406
1954 (NL1W) 2 10.6570 8.2515 11.5625 8.9521 12,4640 9.8982
3 11.2716 11.7889 13.7926 14,17 14.9787 16.5599
Borrego Mountain 1 8.1361 5.1862 9.0637 5.8249 9.4433 6.7250
1968 (SPPW) 2 8.1439 b.2826 11.6371 6.8049 12.1793 7.2755
3 7.4293 8.5874 10.3588 9.6497 12,6322 10.6648
Long Beach 1 6.6574 4.8628 9.4073 5.5243 10.4181 6.0099
1933 (N32W) 2 9.4613 6.8502 10,0027 7.7577 9.3451 8.6377
3 9.6117 8.6377 10.9573 11.8081 10.5629 14.7345
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TABLE 3

Global Mean and Standard Deviatiom of Error
and Absclute Error for Differenr Stiffness Ratios

v3r Regress

TABLE &

“oun.
LK : - -
K ms . X . . ~ 2
P -: : % s
10 ! 0.052 . 0.121 | 0.18 ; .32
10 0.08306  -0.09i3s  0.C2333  C.0436C
| 100 | 0.077 | 0.260 | 0.206 | Q.15 100 | 0.2326  -.08+3  0.0CI4% C.0543%
I 10®% | o0.0e6 | 0.286 | 0.233 | 0.172 ! 108 o.2s0s —5.i362 0.01138  0.06354
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Fig. 1(a) - Base Excited SDOF
Oscillator with single Elastic
Barrier
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Fig. 1(b) - Equivalent linear
Base Excited SDOF Oscillator
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Fig. 2 - Typical Vibroimpactive Response
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Fig. 3 - Histogram of local peaks

of Vibroimpactive Respcnse in Fig. 2
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Fig. 4 - Histogram of Error € for 51
Earthquake Responses

Specify the allowable probability
of exceedence P_ for limit
responge X

Choose K

Find approximate solution
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|
L

of error from reg
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ressicn line using
linear interpolation

Find P = prob ‘Xmax > X)

Using normal distribution

Fig. 5 - Flow Chart of Probabilistic Design Example
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