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SUMMARY

A new family of optimal computer algorithms is presented for calculating
the response (relative displacement, velocity or acceleration) of a single-
degree-~of-freedom linear oscillator subjected to a ground acceleration history.
Each algorithm is optimal within a class of linear recursive algorithms con-
taining a fixed number of parameters in the sense that its transfer function
gives the least-squares match of the oscillator transfer function over an
appropriate frequency band. The choice of which optimal algorithm to use for
a particular response quantity generally involves a trade-off between accuracy
and computation time.

INTRODUCTION

An important problem in earthquake engineering is to calculate efficient-
ly and accurately the response of a single-degree-of-freedom linear oscillator
subjected to a ground acceleration history which is available in digitized
form. Computer algorithms to solve this problem may be used, for example, to
calculate response spectra during routine processing of strong-motion accel-
erograms. The algorithms may also be used to compute the earthquake response
of structures modelled as multi-degree-of-freedom linear systems with classi-
cal uncoupled modes.

The development of appropriate algorithms has attracted much interest
over the last two decades. Initially, general methods for numerical integra-
tion of ordinary differential equations, such as the third-order Runge-Kutta
scheme, were adapted to the problem. Later, more efficient techniques were
developed which exploited the linearity of the equation of motion of the os-
cillator (e.g., Refs. 1-3). Some of these authors have utilized the fact
that an algorithm to calculate the response of a linear oscillator may be
viewed as a digital filter, and they have therefore used methods from filter
theory to design a filter with appropriate frequency characteristics.

In this paper, a general class of recursive algorithms is considered
which encompasses most of previously published algorithms. Two criteria con-
cerning the accuracy of the algorithms are applied to select the optimum one
with a specified number of parameters. Accurate algorithms are presented for
the displacement, velocity and acceleration of an oscillator which involve
only three, four and five multiplications per time-step respectively. More
accurate algorithms are possible, although generally at the expense of in-
creased computation time.
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THE ALGORITHMS

The problem is to calculate the solution at discrete times t; = nit,
n=0,1,..., N, of the equation of motion:

%+ 2hiok + wox = -z(t) (1)

where x(0) = xg, i(O) = v; are specified, the ground motion z is known at each
tn, and the natural frequency &g and damping factor h of the oscillator are
specified.

Let yp denote an approximation to a response quantity y at time t,, which
may be relative displacement x, velocity X, or acceleration x, of the oscil-
lator. The following general class of linear recursive algorithms is con-
sidered for calculating the sequence {yn}:
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The novel feature of the approach presented herein is that the bk and cj
are chosen in such a way that there is an optimal match of the frequency
characteristics of the algorithm and the oscillator, thereby producing algo-
rithms which are in a certain sense the most accurate within the class defined
by (2). These optimal algorithms prove to be distinct from any of the pre-
viously published algorithms known to the authors.

Selection of Parameters

The parameters in equation (2) are selected by imposing two conditions.
The first is that the transient part of the solution of (1) due to the ini-
tial conditions is determined exactly, ignoring the finite precision of com-
puter arithmetic. The second condition is that the transfer function of the
algorithm optimally matches the transfer function of the oscillator, in a
least-squares sense, over some frequency band.

The first condition means that the general free vibration solutions of
the algorithm and the oscillator at times tp = nAt must be equal. This is
achieved by taking K = 2 and:

1
b1 2 exp (-hf) cos [(1-h?)? we]
bz -exp (-2hQ,)

where (o = woldt. With this choice, the independent solutions of the homo—
geneous form of equation (1), exp (At) and exp (At) with A = —hwo + j(1-h2 )4»m
are also for t = nlAt independent solutions of the homogeneous form of equation
(2). Another interpretation of this choice of b; and b, is that it ensures
that the poles of the transfer function of the oscillator are also poles of
the transfer function of the algorithm.

(]

(3)

L}

The second condition above is now imposed to determine the values of Ci»
i=20,...,I as those which minimize the measure-of-fit:

J( = bél Q RIS 2
coreep = L IH@) - H @) APALRCN) (4)

. *
where Hy(Q) is the exact transfer function for the response y and HY(Q) is the
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transfer function of the algorithm, and J has been normalized to facilitate
comparison of different cases. Notice that the complex-valued transfer func-
tions are matched, so both the amplitude and phase characteristics are con-
sidered. In (4):

H (D) = =(o)f /A if yex j
= -Aeid /[ ACD) if y=x (5)
= 3% 7 A@) if v=X
and . ;
Hy(E) = iio c; exp (-3il) / B(%) (6)
where A@) = D57 - 47+ 32m30, (7
and B(2) = 1 - b: exp (-37) - by exp (-327) (8)

The nondimensional frequency p = %f in equation (4) ranges over a corre-
sponding frequency band from DC to the Nvquist frequency in equal steps. If
M is sufficiently large, the minimizing values become insensitive to the ac~
tual value of M and the results correspond to using integrals in equation (4).
We have taken M = 200. The frequency band of 0 to 7 for [ = 27flt, where f
is the excitation frequency, is consistent with the result from sampling
theory that the discrete values {z(nlt)! can only represent correctly the fre-
quency content of z(t) over the band-width from DC to the Nvquist frequency.
There is therefore no point in attempting to force the algorithm to transform
correctly those frequencies outside this band. Anyway, this is prevented by
the periodicity of H;(Q).

The minimization of J may be performed analytically for one or two
parameters. For more parameters, it 1s easier to determine numerically the
minimizing values of the ci by using Gaussian elimination to solve the linear
system of equations which arises from the condition for the minimum of J. For
either case, a FORTRAN subroutine has been written to calculate the c¢i for a
specified wo, h, At and I. In addition, some of the ci, i < I, may be forced
to be zero. For example, the optimal algorithms with only cj nonzero were
studied for various values of I and it was found that the best displacement
algorithm involving only one cj is the one optimized with respect to c:.

Accuracy of the Algorithms

All algorithms with I < 3 were studied, including setting some of the cj,
i< I, to be exactly zero. Thus, the optimal algorithms were determined
within each of the 7 families given by (cg,ci,c2) = (¢,0,0), (0,c:,0), (0,0,c2),
(co,¢150), (co,0,c2), (O,c1,¢2), and (co,c1,c2) in full form.

The accuracy of the algorithms as measured by their match of the ampli-
tude and phase of the oscillator transfer fumction deteriorates as the oscil-
lator frequency approaches the Nyquist frequency, that is, as the number of
time-steps per period decreases. For 10 time-steps per period, an accurate
displacement algorithm is obtained which has only one cj coefficient. For the
same number of time-steps per period, accurate algorithms for velocity and ac-
celeration require two and three coefficients respectively. These algorithms
for displacement, velocity and acceleration have the following forms:
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Xnp = biXp-: + baxp-o + CiZp-1 (9)

e e
vhp = bivp-: * bzvp-z + cp2p t c2Zp-; (10)
an = biap-:; + bap-2 + co'Zp + c:2pg-1 + c2 Zp-2 (11)

The good accuracy of these algorithms in the frequency domain is exhibited in
Figs. 1,2. The transfer function for the acceleration algorithm (Fig.2a) is
for the case of 3 time-steps per period. For 10 time-steps per period the
plots of the oscillator and algorithmic transfer functions are indistinguish-
able.

The optimal algorithms of the form of equations (9) to (11) were ob-
served empirically to have a time-domain error of order (At)“ for forced vi-
brations where the solutions of (1) were available in analytical form. For
free vibrations, the computed solutions are exact, except for round-off error
due to the finite precision of the arithmetic operations in the computer, and
also due to small errors, discussed later, in starting the algorithms when x;
and vp are specified.

The rate of convergence, (&t)n, of the error is often used to compare the
accuracy of time-stepping algorithms. This has the advantage of applying to
linear and nonlinear differential equations, but it gives no indication of the
relative accuracy of different algorithms which have the same rate of conver-
gence. For linear systems, it is much more informative to compare how the
amplitude and phase of each frequency component in the excitation is changed
by the oscillator and by the algorithm.

On the basis of their transfer functions, Preumont (Ref. 4) has compared
the accuracy for the solution of (1) of some important algorithms within the
Newmark 2 family (Ref. 5), including the central difference, trapezoidal and
Fox-Goodwin algorithms. On the same basis, he also compared the Nigam-
Jennings (NJ) algorithm (Ref. 1), which is derived by assuming the excitation
is linear between sampling times. The NJ algorithm, which is the current
standard in the U.S. for computing response spectra of strong-motion records,
proved to be the most accurate of those studied by Preumont.

The Newmark B family and the NJ algorithm have the coupled form:

Xn = aiixp-1 + aiz2vp-1 + b1i1Zp + biazp

Vn = azixp-1i + azavp_1 + bai1Zy + boaZpoa (12)
However, the corresponding displacement and velocity transfer functions still
have the form given in equations (6) and (8). From this fact, it is possible
to derive equivalent algorithms which consist of one recursive equation for
displacements and another for velocities. These uncoupled equations each
have three c; coefficients as in the acceleration algorithm (Eq. 11), except
that the values of the coefficients are different. The equivalent NJ algo-
rithms do have the same coefficients b; and bz (Eq. 3), as expected, since
the basic assumption of piecewise linearity of the excitation is exact for
free vibrations.

By the definition of algorithmic accuracy in terms of transfer functionms,
the optimal algorithms for displacement and velocity involving three coeffi-
cients cg, ¢; and c; must therefore be more accurate than the NJ algorithm,
which in turn is better than the Newmark B family. It turns out that the
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algorithms in Egs. (9) and (10), which combined involve onlv 7 multiplications
per time-step, are also more accurate than the NJ algerithm which involves 8
multiplications per time-step. Their match of the amplitude of the oscillator
transfer functions is superior, although the phase match is slightly poorer
than that of the NJ algorithm. The excellent phase behavior of the latter is
because linear interpolation of the ground motion does not alter its phase,
and so the subsequent exact solution of Eq. (1) with the piecewise linear
history for z must reproduce the correct phase behavior in the responmse. It
is only the final sampling of the response at every t that produces some
phase error because of aliasing.

The optimal displacement algorithm with the form of Eg. (9 was also com—
pared with one due to Ehrenberg and Hernandez (Ref. 3). The EH algorithm is
derived as a covariance-invariant digital filter, which is a filter which
closely reproduces the amplitude of any desired transfer function. It has the
form: Xn = bixp-1 + baxp-z + C2Zp + &:1Zp-: (13)
This is actually a modified form of the equation in their paper which uses
Zpn-1 and Zp-; in the forcing terms. The original algorithm produces a large
phase error. Changing the subscripts as in Eq. (13), but still using the
original coefficients, removes a linear trend from the phase distortion with-
out altering the amplitude behavior of the algorithm. This produces a modi-
fied algorithm which has a smaller phase error, but it is still worse than
that of the optimal algorithm, Eq. (9). The amplitude of the transfer func-
tion of the EH algorithm is better, however, than that of Eq. (9). In effect,
the optimal algorithm produces a very acceptable compromise between the two
extremes of the NJ algorithm, on one hand, which has a smaller phase error but
poorer amplitude error, and the EH algorithm on the other hand, which has a
smaller amplitude error but poorer phase error.

As a final comment on the subject of algorithmic accuracy, observe that
if the ground motion was truly linear between sampling times, then the NJ
algorithm would give exact solutions of (1). In terms of a frequency-domain
interpretation, the frequency components in the sampled ground acceleration
from DC to the Nyquist frequency would be "aliased, or corrupted, by the
higher frequencies in the piecewise linear acceleration in such a way to com-—
pensate exactly for the deficiencies in the frequency characteristics of the
algorithm. In general, the variation of the ground acceleration between
sampling times is unknown, but it certainly will not be exactly linear. It
seems safer, then, to judge the accuracy of an algorithm in terms of its
transfer function rather than on the basis of assumptions about the behavior
of the excitation.

Numerical Efficiency

The numerical efficiency of an algorithm may be assessed on the basis of
the number of multiplications required to solve the response over one period
of the oscillator, if, for convenience, the time-step At is chosen so that an
integral multiple of it equals the period. Additions may be ignored since the
computer processing time for these operations is normally much smaller than
for multiplications.

The numerical efficiency can be increased by using fewer time-steps per

period, but obviously at the expense of accuracy in general. It is possible,
however, to get increased efficiency without a loss of accuracy. For example,
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the optimal displacement algorithm with 3 nonzero cj coefficients has essen-
tially the same accuracy with 5 time-steps per period as Eq.(9) with 10 time-
steps per period (compare Fig. la and Fig. 2b). Thus, although the number of
multiplications per time-step is increased by a factor of 5/3 over that in
Eq. (9), the number of time-steps per period can be reduced by 1/2, leading
to fewer arithmetic operations per period without loss of accuracy.

Usually the time-step cannot easily be varied since it is fixed by the
sample interval of the available ground acceleration data. Numerical effi-
ciency then depends on the number of multiplications per time-step, so, for
example, Eq. (9) would have the best efficiency for amy displacement algo-

rithm.

Starting the Algorithms

Algorithms in the form of Egs. (9) to (11) are not self-starting since
Eq. (1) must be solved subject to the specified initial conditioms, X¢ and vq.
Eqs. (9) and (10) require xj,x: and vo,v: respectively, while Eq. (11) re-
quires xy,vy,%x1 and v; in order to calculate ap and a; from (1).

One solution to this problem is to calculate x; and vi by employing a
self-starting algorithm, such as the trapezoidal one, whose coefficients can
be evaluated efficiently. After the first time-step, a switch is made to the
appropriate optimal algorithm. Another possible solution, yet to be investi-
gated, is to determine an optimal self-starting algorithm in the form of
Egs. (12) where the ajj would be chosen to give the exact free-vibration solu-
tion and the bjj would be chosen by a weighted least-squares matching of both
the displacement and velocity transfer functions.

Calculation of Maximum Response

Accurate computation of the oscillator response at discrete times
tn = nit does not guarantee accurate determination of the true (continuous-
time) peak response, since this peak will usually occur within one of the
time intervals of length At. The maximum of the calculated discrete response
will be within 5% of the true peak if at least 10 time-steps per period are
used (Ref. 6). To take advantage of those algorithms, such as those corres-
ponding to Fig. 2, which give good accuracy at times tp using fewer time-steps
than 10, the discrete solution could be recalculated with smaller At in the
vicinity of the discrete maximum determined using the original At.
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Fig. 1 Comparison of the oscillator transfer function (——) and that of the
optimal algorithm (---) with the form of:

(a) Eq. 9 for displacement,
(b) Eq. 10 for velocity.

The oscillator frequency is 0.2 of the Nyquist frequency and its
damping is 5%.
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Fig. 2 Comparison of the oscillator transfer function (——) and that of the
optimal algorithm (---) with the form of Eq. 1l:

(a) for acceleration,
(b) for displacement.

The oscillator frequency is 0.4 of the Nyquist frequency and its
damping is 5%.
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