IDENTIFICATION OF STRUCTURAL PARAMETERS
AND ASEISMATIC CONTROL OF THE BUILDING

Minoru Tomizawa (I)

SUMMARY

In this paper, applying the idea of model reference adaptive svstem
{MRAS) developed in the field of automatic control engineering to aseismatic
control problem of the building, implementation of the MRAS algorithm by
digital computer is presented. The paper shows also a method for estimating
the dynamical characteristics from noisy observations of dynamical behaviors.
The equation of motion for three-dimensional multi-degree-of-freedom lumped
mass system proposed in this paper are generally applicable to the vibration
problems of multi-story buildings having any eccentricities of center of
rigidity or center of gravity.

INTRODUCTION

For the purpose of reducing seismic response of building frame, manv
investigations or ideas on the earthquake isolation device for the building
have been proposed. But no one gets wide practicality since almost the
entire proposition has some restrictions such as input excitations to the
device become allowable only when either they are within a limited frequency
band or they are within a limited amplitude.

Today's electronics engineering yields the possibility of developing rather
positive scheme for aseismatic control of the building than negative scheme
for the earthquake isolation. The term "aseismatic control" means controling
dynamic behavior of the building under the earthquake motion to a desired
state by modifying its structural parameters such as rigidity and damping of
the building frame. To realize the aseismatic control system, it is neces-
sary to develope a software that contains a procedure for how to modify the
structural parameters and a hardware that contains a mechanism for how to
carry out the modification actually. This paper describes the software part.

The software has to possess a high-speed performance because the seismic
response of the building transits very rapidly. Therefore it can not cope
with the problem by the traditional feedback control system having relatively
a low-speed performance. To date, idea of the parallel model reference
adaptive system (parallel MRAS) may be almost unique solution to the problem
in the face. The advantage of the parallel MRAS is easy-to-implement system
with a high-speed of adaptation.

Basic scheme of the parallel MRAS is given in Fig.l. The reference model
indicated in Fig.l specifies a desired performance and the adjustable system
also indicated in Fig.l is a system capable of adjusting its performance by
modifying its parameters. The term disturbances represented in Fig.l are
parameter-disturbances modifying the adjustable system.

Algorithms for implementation of the parallel MRAS require, as mentioned
later, a priori knowledge of initial values of the structural parameters.
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To satisfy this requirement, a
method for identifying the struc-
tural parameters, i.e. stiffness
matrix and damping matrix of the
building frame, from noisy obser-
vations of dynamic behavior of the
building is proposed. In this
paper, moreover, a new description
to three dimensional dynamic behav-
iors of the general structural
system including braced frame sys-
Fig.l Basic configuration of a tem, framed tube system and so on
parallel MRAS (after Landau) is presented.

STATE-SPACE EQUATIONS OF MOTION

Consider a gauge axis set vertically through a n-story building at an
arbitrary point on whose representative floor. And define the following
flexibility matrix L with respect to the gauge axis on the assumption that
each floor slab of the building has infinite plane rigidity. For i=1,2,++-,
n, and j=1,2,***,n, where

XY 3 R, XXij = ith floor deflection in the direction
S U of X when unit force in the direction
_ ) i of X acted on jth floor,
L - ‘?ij_;~?fi_4_?ﬁf_ ¥Xij = ith floor deflection in the direction
{3nx3n) ZX. ' RY, 'BR of Y when unit force in the direction
_ RS B of X acted on jth floor,
RXij = ith floor rotation when unit force in the direction of X acted om jth
floor, XYij = ith floor deflection in the direction of X when unit force in
the direction of Y acted on jth floor, YYij = ith floor deflection in the
direction of Y when unit force in the direction of Y acted on jth floor,
RYij = ith floor rotation when unit force in the direction of Y acted jth
floor, XRij = ith floor deflection in the direction of X when unit moment
acted on jth floor, YRij = ith floor deflection in the direction of Y when
unit moment acted on jth floor, RRij = ith floor rotation when unit moment

acted on jth floor, in which the positive directions of the X,Y and the gauge
axis are specified by a cartesian reference frame.

Since stiffness matrix K equals inversion of the flexibility matrix L, the
equation of motion for three dimensional elastic vibration of multistory
building frame subjected to earthquake ground motion may be written as:

MZHCZHKE = -MZo(t) (1
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K=L™" and C = YoM + v,K in which m and J are floor concentrated mass and mass
moment of inertia with respect to the gauge axis respectively, I and T are
floor displacements relative to the base of the building in the direction of
X and Y respectively, [ is relative floor rotation to the base with respect
to the gauge axis, EO, No and I, are motions of the base due to earthquake,
and Yy, are Rayleigh's coefficients of damping.

Defining further the state vector

x(e) = [&,=++&,'nyoen, T 000L, i:"'in M. eeer, Z.oeeeZI]

NY.O

= [x ecccccccecce Xm]Ts
the continuous-time state-space equation equivalent to the Eq.(l) can be
obtained as follows:

x(t) = Ax(t)+Bu(t) (3)
where the system matrices
1
0 | I 0 1
-A = £39529)+£3E§391 and B = | Gm3) in which 1 = :
(6nx6mn) MK oMC (6nx3) '2) _? 8 (nx1) 1
!
i 0 0-1

and the system disturbance u(t) = [éOﬁOiO]T = [uxuyug]r.

For convenience of the implementationm on digital computer, the following
discrete-time state-space equation which is the discrete-time analog of Eq.
(3) is introduced (Ref.2). That is

X (k+1l) = ¥x(k)+Tu(k) (4)
where ¥ = exp[Aat], I'= A7[W-1]1B, x(k) = x(t), u(k) = u(t) in which
keat< t <(k+l)at for some k=0,1,2,*++, and at is sampling time interval.

ALGORITHMS FOR PARALLEL M.R.A.S.

Let the following three discrete-time state-space equations express the
reference model, the adjustable system and incontrollable system.

Reference model : X(ktl) = Yux(k)+L,uk) (5)
Adjustable system : o y(ktl) = Vg (k+tl)y(k)+Ts (k+1)u(k) (6)
Incontrollable system : 2z(k+l) = ¥(0)z(k)+Is(0)u(k) (7

In the reference model, the transition matrix V¥, is calculated from a system
matrix Aum which consists of mass matrix My, stiffness matrix Ky and damping
matrix Cy. The matrices My, Ku and Cy may be assumed imaginatively for the
purpose of realizing a desired fashion in which the reference model will
behave under the system disturbance u(k). For example, when stress distri-
bution of a building frame having some imaginary dynamical characteristics
stays within elastic range even if the building is subjected to any strong
earthquake ground motion, such a building frame becomes one of the reference
models. To know the time varying transition matrix Wg(k) and the time
varying disturbance transition matrix [Ig(k) in the adjustable system is the
objective of the computation for minimizing the difference [Xx(k)-y(k)]
through the algorithms mentioned later. The reason of presenting the incon-
trollable system having a time-invariant transition matrices ¥g(0) and I4(0)
which specify initial state of the adjustable system is for showing effec-
tiveness of the adaptive control by comparing output of the adjustable system
with that of the incountrollable system.

The adaptation algorithms, after Landau (Ref.3), for the parallel MRAS are
summarized as follows:
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where 6n%x6n matrix D becomes a solution of the Lyapunov equation‘P;DQN—D = =N
for an arbitrary positive definite matrix N if the_eigenvalues of ¥y are less
than one in absolute values, 6nx6n matrices P and P and 3%3 matrices R and R
are positive definite constant matrices to be assumed, 6nx6én matrix W¥o(0) and
6nx3 matrix ['o(0) are assumed to be known and [ is 6nx6én identity matrix.
Once the matrices Ws(k) and I's(k) are obtained through the above algo-
rithms, the time-varying system matrices As(k) and Bs(k) which are necessi-
tated to control the seismic behavior of the building can be calculated.
The 3nx3n matrix Ag(k) and the 6nx3 matrix Bs(k) may be express formally as
As(k) = (1/at)ln¥s(k) and Bs(k) = [¥s(k)-I]"'As(k)Ts(k). But to execute these
calculations rapidly and accurately, some device on computation procedure
becomes necessary.

E;Q(Z)V(Z) [Ru(2) T7+Q ) v () [ (R+R)U (k) 17+ I5(0)

IDENTIFICATION OF STRUCTURAL PARAMETERS

To carry out the adaptive control of seismic behaviors of the building
by virtue of the algorithms (8), a priori knowledge of the values of the
matrices ¥s(0) and I's(0) are required. The problem how to know the matrices
¥s(0) and T's(0) is the problem how to identify the structural parameters.

Consider the following set of equations, called the system equation, for

k=1,2,3,°%°,

X(k+1) = ¥x(k)+Tu(k) (9a)

f(k) = Ix(k)+ n(k) (9b)

where 6nx1 vector f(k) denotes the measurement vector and 6nxl vector N(k) is
the measurement error vector and is assumed to be Gaussian white noise vector
with zero mean. Eliminating the state vector X(k) from Egs.(9), one may
obtain the expression given below:

fk+l) = Oxfw(k)-P(k) J+n(k+1) (10)
where 6nx(6n+3) matrix Ok = [W¥iI'l« and
(6n+3)x1 vectors w(k) = [ﬁ%ﬁ}] and Y(k) = fﬂ%&l]_ To estimate the parameter

matrix O« from a finite number of observations by means of the least-squares
estimation procedures (Ref.4), let an error function be the following form.

3= 3 IF ()-8 e -7 12 an
With taking care of the differential calculus, ome may obtain the following
e gék =2,§: [-f (D { (D)= YD) HOdw(D)-P(D) H «"(D-PTE@ I (12)
Since the vector n(k) is composed of White noise entries, Eq.(12) can be
written as the reduced form given below for sufficient large number of k.

3 K
s & 28 Fl) WT0426,0 3 w(1) WD) 4V, ] )

or in matrix forms,
gék & 2R 01+20,[Q.01+kV, ] s
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where Fy = [f(2)f(3)-+++f(kt1)], Qu = [w(l)w(2)-++w(k)] and

Gy
of .0
Ve = E[¥k) ¥I(®)] = ‘202 ; 1Bn3)
S I S

in which the notation E[+] shows the mathematical expectation. For some
matrix O, Eq.(14) can be equated to zero, leading to an expression for éK at
which the error function J becomes an extremum. Therefore
6. = Fe QI 20HkV, T (13)
If the covariance matrix V, of the measurement error vector is known,
employing input and output observations Eq.(15) provides the estimates for
the matrices ¥ and I'. Then the estimate for the system matrix A can be
calculated accurately by the following formula (Ref.2) when the estimate ¥
has distinct eigen-values.
As
)\2 -
A=[p1p2""p6n] ., [pmpz"“pSn] (16)
>\l:‘:n
where A; = (1/at)lny, and p, = g, for i=1,2,-++,6n, in which u, are the dis-
tinct eigen-values of ¥ and Qi are its corresponding eigen~vectors.
The estimates for the structural parameters K and C looking for, thenm, are
given as follows:
01 I,0].
—oH- o= oA (an
K!C 0 !-M
To implement the above estimation procedure, it is necessary to evaluate
fundamentally the covariance matrix Vy. By a similar way that is described
in Ref.5, one may obtain the required expression for estimating the Ith
diagonal element of the matrix Vi. For an abbreviated suffix-notation r(=6n),
8= =3 p2<3>(1+va ) (18)

1f~
where,

p () = £, (k)+$r'a £ (k—i)—Zr:B,u(k—i) (19)

in which £, (k) is the lth element of the measurement vector f(k), ar,az,"**",
a, are coefficients of the characterlstlc polynomlal of ¥'which is determlned
from the approximated equation [¥'I', = F Q7[Q.2.", and B, B, B are
defined as given below:

ﬁ, 1 0 [EEREEREE 0 g, g,

B ar 1 °-. : 92 9>

A N B Do =T,

Br-‘) ar-2ar-3 e 1.0 9-,_1 gr-r

Br ar.18r-2 s a1l g, ’ 9:
T=[3@¥) @ @) - (3@,
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NUMERICAL EXAMPLE FOR IDENTIFICATION

As a basis for numerical verification to the theory of identification,
three-stor. braced steel-building-frame as shown in Fig.2 was chosen.
The gauge axis is set vertically through the points A. Each floor has a
uniformlv distributed mass whose total value and the moment of inertia with
respect to the gauge axis are 0.05 ton*sec /cm and 2333.3 toncm*sec respec-
tively. Each bracing bar is assumed to be available for tensile force but
to be unavailable for compressive force. The stiffness matrix of this struc-
ture shown in Table 1 is evaluated in consideration of axial deformation of

a

B EN DIMENSIONS (cm)

y a
RN \\gi*\sx a b c d
; ; 500 300 200 400
j 4 SIZE OF MEMBERS (mm)
=~ a i all cols. .

aeis | | :[Y WF - 300%300x10X15
i K X kj
< A !
] ‘j all girs. | WF - 300x150%6.5%9

wr f by 2FB - 90x12
<~ 1| all bras. | (¢f sec. 16.44cm )
mrr X s

Fig.2 Building frame model for numerical tests

columns and shear deformation of column-girder joint panels.

Table 1 stiffness matrix Table 2 Rayleigh's damping matrix
(true values, ton/cm) {true values, ton®sec/cm)

[ 0.229396E+402 -0.129292E+02 0.259643E40L ..... 0.725587E~01 -0.374846E-01 0.752763E-02 .....

| -0.129282E402  0.185065E+02 -0.871747E40L ... -0.374846E~01 0.597061E-01 —0.252739E-01 .....

| 0D.250643E+01 ~0.871747E+01 0.655170E+01  ..... 0.752763E-02 -0.252739E-01 0.250465E-01 .....
"""""" abbreviated. AR abbreviated.

Assuming the damping factors for both first and second natural circular
frequencies as 0.02, the Rayleigh's damping matrix may be calculated as shown
in Table 2. From a point of view of the aseismatic control scheme, it is
desirable to estimate these matrices without any ground motions since the
matrices are required as a priori knowledge. The afore-mentioned theory of
identification is also applicable to the case of free vibration i.e. uU(k)= 0
with a given x(0).

Regarding the maximum realization of the measurement noise at so-called 30
level as 0.05 percent of the maximum response with reference to Table 3,

Table 3 Performances of observation devices

Maximum error for measurable range

SENSOR |AMPLIFIER|A/D CONVERTER
For DISPLACEMENT|0.00003 % 0.049 %
For VELOCITY  |0.01 % | 0-0001 %) 0.0488 % 0.050 %

Root mean square
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the Gaussian white noise sequence for

simulating measurement error whose

standard deviation is 0.016 percent of the maximum response can reasonably

be assumed.
elements of the state vector and then

Making thus the white noise sequences corresponding to the

adding them to the response sequences
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vielded bv the free vibration gives the observation data to be used for the

computer simulation.
By virture of thecry of identification one may obtain the estimates shown

in Table 4, Table 5 and Table 6 using 300 samples with 0.0l sec. interval.

Table & Estimated stiffness matrix Table 5 Estimated damping matrix
(ton/cm)

(ton*sec/cm)

1T 0.725540E-01 -0.374817E-01 0.752688E-02
1 -0.374764E-01 0.597004E-01 -0.252722E-01
0.752341E-02 -0.252709E-01 0.250456E-01

{
l
i
i

J b e abbreviated. ]
L

Table 6 Representative estimated variance of measurement noise

Number of samples|oZ(true value)|J3(estinated)|Degres of =2stimation

38D 0.24925E-06 | 0.25105E-06 99.3 %

NUMERICAL EXAMPLE FOR ASEISMATIC CONTROL

Suppose a system composed of the model that is shown in Fig.2 and an
appropriate equipment by which lateral rigidity and damping characteristics
of the model can be adaptively modified. And further suppose a case where
the model shown in Fig.2 has such imaginative damping factors as the values
0.3 for both first and second natural circular frequencies. Let the system
and the model like these be the adjustable system and the reference model
respectively. The employed system disturbance vector U(k) consists of the
components SO0E and S90W of El Centro 1940 earthquake record without the
ground rotation. The employed system matrix As(0) is determined by the true
-value stiffness and damping matrices as shown in Table 1 and Table 2 respec-
tively not by those estimates, in order to examine the accuracy that the
adaptation algorithms may have. Carrying out the MRAS algorithms by digital
computer gives the following results. From Fig.3 to Fig.8 show the time
history responses of top floor of the models during five second. These
responses are measured with reference to the gauge axis that is specified in
Fig.2. There were assumed as: z(0) = y(0) = 10x(0), P = 0.2P and R = 0.2R.

One may ascertain by examining these figures that there exists a marvelous
agreement between the response of the reference model and that of the adjust-
able system. These two responses are so agreeable that one can not distin-
guish between them in the scale of the presenting figures. One may also
CONCLUDE that the scheme of aseismatic control is successful by comparing
the response of the adjustable system with that of the incontrollable system.
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