OPTIMAL SENSOR LOCATIONS
FOR GEOTECHNICAL AND STRUCTURAL IDENTIFICATION
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SUMMARY

The optimum sensor location problem, OSLP, may be thought of in terms of
the set of systems, S, the class of input time functions, I, and the identifi-
cation algorithm (estimator) used, E. Thus, for a given time history of input,
the technique of determining the OSL requires, in general, the solution of the
optimization and the identification problems simultaneously. However, this
paper introduces a technique which uncouples the two problems. This is done
by means of the concept of an efficient estimator for which the covariance of
the parameter estimates is inversely proportional to the Fisher Information
Matrix.

INTRODUCTION

The problem of structural identification in geotechnical and structural
engineering is one which has received considerable attention from several
researchers in the recent past (Refs. 1-5). Though various methods have been
developed for identifying the different parameters that characterize a build-
ing structure from records obtained in them under various loading conditioms,
few investigators, if any, have looked at the question of where to locate sen-
sors in a structure to acquire data for "best" parametric identification
(Ref. 6). The problem of optimally locating semsors in a structural system
arises from considerations of: (1) minimizing the cost of instrumentation;
and (2) efficiently detecting structural changes in the system with a view to
acquiring improved assessment of structural integrity.

The problem addressed in this paper can be stated as follows: Given m
sensors where should they be located in a structure so that records obtained
from those locations yield the "best" estimates of the unknown parameters.

In the past, the optimal sensor location problem (OSLP) was solved by
positioning the given number of sensors in the system, using the records
obtained at those locations with a specific estimator, and repeating the pro-
cedure for different sensor locations. The set of locations which yield the
"best" parameter estimates would then be selected as optimal. The estimates
obtained, of course, would naturally depend upon the type of estimator used.
Thus the optimal locations are estimator dependent, and an exhaustive search
needs to be performed for each specific estimator. Such a procedure besides
being highly computationally intensive suffers from the major drawback of not
yielding any physical insight into why certain locations are preferable to
others.

Recently, work on the solution of the OSLP was done by Shah and Udwadia
(Ref. 6). 1In brief, they used a linear relationship between small
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perturbations in a finite dimensional representation of the system parameters
and a finite sample of observations of the system time response. The error
in the parameter estimates was minimized yielding the optimal locations. 1In
this paper, we develop a more direct approach to the problem which is both
computationally superior, and throws considerable light on the rationale
behind the optimal selection process.

We uncouple the optimization problem from the identification problem
using the concept of an efficient estimator (e.g., the maximum likelihood
estimator as time becomes very large). For such an estimator the covariance
of the parameter estimates is a minimum. Using this technique and motivated
by heuristic arguments, a rigorous formulation and solution of the OSLP is
presented. The method is applied to a building structure modelled as a gen-
eral linear dynamic system. For the N degree of freedom system considered,
the methodology for selecting m(m <N) of the nodal displacements for purposes
of measurement is presented.

Sample calculations are made for a simple building structure modelled as
a two-degree-of-freedom system subjected to base excitations. The optimal

sensor location for the identification of: (a) the mass ratio; and (b) the
stiffness ratio is investigated.

The results indicate that the OSLP depends on:

1) the class of systems, S, to which the structure belongs;

2) the type of excitation;

3) the actual system parameters involved; and

4) the parameters to be identified.

THEORY

Consider a system modelled by the equation

MX + CX + KX = F(£) &H)
where M, C, and K are the (NXN) mass, damping and stiffness matrices, (F(t) is
an (NX1) vector containing inertial forces and externally applied loads and X
is the N-vector of nodal displacements. Let 6y, 8¢ and 6g be vectors contain-
ing the various parameters related to the mass matrix, the damping matrix and

the stiffness matrix, respectively, which need to be identified. TFor con-
venience, we collect these quantities in the parameter vector, 6, defined as

T _ [,T),T T}
8 {aM1eC]eK
where the superscript T indicate matrix transpose. If the M, C and K are
symmetric each of the three subvectors has a maximum dimension of N(N+1)/2.
Given m sensors (m<N), we then need to find where to locate them so that

the covariance of the estimate, 8, is a minimum. Assume further that the
measurement vector Z(t) can be expressed as
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zi(t) = gl[X(B,t)] + Ni(t) 5 i=1,2,...,N (2)

where Zl is the ith component of Z(t), and the functionals g; represent the
"'measurement process'. The dependence of the response X on the parameter
vector 6 is explicitly noted. The measurement noise Ni(t) is taken as non-
stationary Gaussian White noise with a variance of $2(t). Therefore,

E Ni(tl)Nj(tz) = w (€1) 8 (i-3) 8p (tq-ty) 3

where §g and &p stand for the kroneker and the dirac-delta functionms,
respectively, A total of m out of N responses need to be selected so that
they contain the most information about the system parameters and are maxi-
mally sensitive to any changes in the parameter values. This "selection"
process can be represented by an m—dimensional vector Y such that

¥(t) = SZ(t) (4

where S is the (m x N) upper triangular selection matrix with each row con-
taining null elements except for one which is unity. The m different compo-
nents of Z selected to be measured are so ordered in vector Y, that if the
element in the i-th row and k~th column of S is unity, the (i+l)-th row has
unity in its 2-th column with % > k. The matrix S has the property that

P = ST in an (NXN) diagonal matrix with unity in its i-th row if, and only
if, Zi is selected to be measured. The elements of P are otherwise zero.
Hence, one can write

Y(t) = Sg[X(6,t)] + SN(t) (58)

H[X(8,t)] + V(t) (5B)

>

If gy is linearly related to the respomse Xj, in general, then

H[X(6,t)] = SRX (6)

where R(t) can be thought of as a dynamic gain matrix. In the case that gj is
related to the response Xj only, then matrix R will reduce to a diagonal
matrix, [\pj .
N
The problem of locating sensors in an optimal manner then reduces to
determining the m locations in P that should be unity. These locations must
be so chosen as to obtain the "best" parameter estimates.

SOME MOTIVATING THOUGHTS AND THE FISHER INFORMATION MATRIX

Consider a case in which one tries to estimate only one parameter, 087,
(to be identified) involved in a dynamic system model with only one sensor
provided. Therefore, one wants to ideally choose a location i (out of N
possible such locations) such that the measurement y4(t), ie[l1,N], te(0,T)
at location i yields the best estimate of the parameter 6j. Heurestically,
one should place the sensor at such a location that the time history of mea-
surements obtained at that location is most sensitive to any changes in the
parameter 6]. Hence, in equation (5B) it is really the slope of H[X(81,t)]
with respect to 61 that needs to be maximized. However, since only the abso-
lute magnitude of this slope is of interest, it is logical to want to find i
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(or equivalently determine the selection matrix S described previously) such
as to maximize (3&/351)2 over the interval (0,T) during which the response is
to be measured. This leads to maximizing the following integral:

T - 2
3
= L 7
qi f (851) dt n

0

When there is more than one parameter to be estimated, and the number of
sensors is greater than unity, this intuitive approach needs to be extended
in a more rigorous manner. In such cases recourse to mathematical treatment
is necessary, and we shall see that such treatment will be in agreement with
our heuristic solution outlined above.

To further understand the problem, let us look at it from another angle,
namely, the concept of an efficient unbiased estimator. For such as estimator
the covariance of the estimates is a minimum. Furthermore, it can be shown
that for any unbiased estimator of 6,

-1
E[(6-8) (6-8)T] 2 [fT (i‘l)T (3}—1) /lbz(t)dt] (8)
- 38 L
0

where 8 is the estimate of & and the matrix [aa/ae}ij é:aﬂi/aej. If the esti-
mator is "efficient", the above inequality becomes an equality. This means
that the left-hand side of inequality (8) takes its lowest value (minimum co-
variance). Hence,

" T T -
E[(e-8) (6-8)"] ={f (-?g—) (%Hg)/wzcodt] (9
0

The term inside the bracket on the right-hand side of the equation (9) is
known as the Fisher Information Matrix, Q(T). Thus, maximizing Q(T) would
indeed lead to a minimization of the covariance of the estimate, 6.

We note then that the m sensor locations need to be so chosen that s
suitable norm of the matrix Q(T) given by,

T T
a(m) = fo (&) (&) voe (10)

is maximized. This constitutes an extension of equation (7), which we heuris-
tically derived earlier for the scalar case, to the vector situation. Intro-
ducing equation (6) in equation (10) one may write

T T T
o Xg Ts Fs, g
Q[T,sl,sz,...,sm] = 2 ———dt (11)
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where Igp is the sy row of the matrix R. 1If further the matrix R is diagonal,
with diagonal element pj,...py; then the ij element of the matrix Q, after
some manipulation, reduces to

n T Bxsk 3x IR (e 2
_Z K K
Q[T,sl,sz,s3,...,qu = J[ B, 8 ( ) > dt (12)

k=1 0 J

where X = {x;} and 8 = {8;}. We note that each element of Qij represents the
cross-sensitivity of measurement with respect to the response xg, of node sy.

The optimal sensor locations are then obtained by picking m locations
sk, k= 1,2,..,m, out of a possible N, so that a suitable norm of the matrix Q
is maximized. This may be expressed by the condition

m oa x ||Q Tisq,8,,.-58 || . (13)
e(1,N) 1’72 m

Although there are several matrix norms which could be used, perhaps the most
useful and physically meaningful in this context is the trace norm. In order
not to detract the reader from the basic methodology we differ an exhaustive
treatment of suitable matrix norms to a later communication.

EXAMPLE
To illustrate some of the ideas of the previous section, consider the
problem of finding the optimal sensor location (0SL) in a two-story building,
modelled by the two-degree-of-freedom system (shown in Figure 1) which is sub-
jected to the base excitation of f(t).
The governing differential equation of motion can be expressed as

i;z + c>.c + KX = -W £(t) (14)

where X = <X; Xp> T C= oK, W= <Am m>T and the matrices M and K are

A B+l -1
M= m , and K = k.
1 -1 1]

A case study for locating sensors to best identify (1) the mass ratio, A, of
the first to the second floor and (2) the stiffness ratio, B, of the first to
the second floor, will be presented.

Let s denote the lower story location and sy the upper story location.
The selection between the locations can be equated to determining the one non-
zero element of the [1X2] selection matrix, S, with the measurement H(t)
defined by

H(t) = SX + V(t) ,

where, V(t) is Stationary Gaussian White Noise (S G W N) with w(t)=wo.
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If S = [1 0] the lower story is selected for measurement; if S = [0 1] the
upper story is selected. The location sj would then be preferred over the
location sy for identifying the parameter A, if Q[T,s1] > QIT,sy1, where T is
the time that the measurement is taken,

X
T 1
B e R A Sl B N P
o 0 _2
dA
T
1 le 2
= — / K_ dt, (lSA)
wo 0
and
T Bxl
1 Bxl Efz 0 0 dA s
QM LQ[Ts,] = —7 o ) o 1| ) ox
Y% 0 3%y
dA
T
1 sz 2
=F f —QZ.— it . (15B)
o 0 :

Since only one parameter is being estimated the Fisher matrices reduces to
scalars.

The dependence of the OSL on various type of the base excitations can be
studied now. Let us for this presentation consider ground acceleration in
the form of a delta function, i.e., £(t) = &8(t).

In this case, closed form solutions for Q; and Q) can be obtained.

For the OSL problem for the "best" (minimum covariance) identification
of the parameter A (given the parameters B and &) using an impulsive base
excitation, Figure 2-A shows the plots of the ratio of the information
matrices Q;(T)/Q2(T), for T = 50 secs, for various values of the parameters A
(which is to be identified) and o« A ow,, where w, A vk/m . Points on the
graph with ordinates greater than unity indicate the optimal location to be
the lower story level and vice versa. The graphs indicate that the optimal
location in most cases, for the range of A considered, is the upper story
level. However, we observe that for some small values of A and o  the OSL is
the lower level. We note, interestingly enough that the optimal sensor loca-
tion for identification of A actually depends not only on the actual values of
B and o« which are presumably known, but also on the value of the parameter A
itself which is to be identified! Thus to be able to ascertain the optimal
sensor leocation some a priori assessment of A is necessary.
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Figure 2-B shows that the optimal location for identification of the
parameter B (given A and &), using an impulsive base input, is again the upper
story level for the range of B values considered. For larger B values, how-
ever, and a*>0.05, the trend appears to be more and more in favor of the upper
story. This seems intuitively correct, for as B becomes larger, the lower
story becomes stiffer and the OSL would be the upper story.

CONCLUSIONS AND DISCUSSION

This paper presents a general methodology for determining the optimal
sensor locations in dynamic systems for obtaining records which would enable
the "best" (minimum covariance) identification of a given set of unknown
parameters in the system. The technique utilizes the concept of an efficient
estimator to uncouple the identification from the optimization problem. In
order to present the basic idea in as clear a fashion as possible, we have
restricted the discussion in this sequel to linear systems.

The method has been illustrated by application to a two story structure.
Though the results presented here for the simple system chosen form only a
first step towards acquiring a detailed understanding of the OSL problem, the
following conclusions appear to be relevant at this time:

(1) The OSL for a given system heavily depends on the class of forcing
functions used for obtaining response data. In this study, an
impulsive base motion is considered.

(2) The OSL for linear dynamic systems is independent of the amplitude
of the forcing function.

(3) The OSL depends in general on all the values of system parameters.
For instance, the OSL for estimating A with minimum covariance
depends not only on the actual parameter values B and o but on the
value of A itself for the system! This implies that the OSL problem
associated with identifying a given parameter (or a set of param-
eters) in a dynamic system necessitates the knowledge of some
a priori estimates of the unknown parameter(s).

(4) The results of our simple example show that the OSL problem yields
solutions which may be difficult to predict on purely heuristic
grounds. The OSL appears to depend, even for this relatively
simple problem, in a rather complex manner on the actual parameter
values of the system and the nature of the base excitation.
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