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SUMMARY

A procedure is outlined for estimating structural parameters based on
relatively simple ambient wind measurements of story accelerations reduced to
resonant frequencies, and corresponding mode shapes. Unknown parameters, cor-
responding to a superimposed stiffness matrix of a closely coupled shear
building on to a stiffness matrix based on a finite element calculation, are
systematically adjusted. The method is applied to a twelve-story apartment
building located in Ottawa, Canada. It is built of reinforced concrete with
primary lateral resistance furnished by shear walls in both directions.

The method developed is based on Bayesian inference with the objective
function relating the errors between measurements and corresponding values
minimized by a modified Newton-Raphson scheme. Not all the mode shapes and
natural frequencies are required, nor do all the stories need be instrumented.
Furthermore, the sensitivity of the measured quantities with respect to the
parameters are based on eigenvalue and eigenvector sensitivities. These are
function only of the corresponding eigenvalues and eigenvectors and take into
consideration the symmetric and banded nature of the stiffness and mass ma-
trices. An appropriate method of evaluating the effect of proposed modifica-
tions on the structural response is based on the sensitivity relationships
used in the identification.

INTRODUCTION

The actual observed dynamic behavior of structures is generally diffe-
rent from that calculated by a finite element model. This is due to a varie-
ty of reasons related to uncertainty in material parameters, behavior at
structural connections, the effect of secondary structural elements, such as
infilled panels, and other simplifying assumptions. Most structural design
codes relate earthquake considerations to the estimated fundamental period
and its corresponding mode shape, which in all likelihood are different than
what is measured.

Once a particular structure is finally built, little attention is nor-
mally given to monitor its behavior unless, of course, problems develop. For
existing buildings which are scheduled for strengthening and/or modification,
there is a practical need for establishing its actual behavior, and corres-
pondingly, its behavior for the modifications proposed once complete. For
instance, additional stories, weight, strengthening of a few bays and/or sto-
ries all modify the structural characteristics. The experimental procedure
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for such full-scale observation must be relatively simple, cause no additional
damage, and require lightweight equipment. Parameters of a finite element mo-
del may then be adjusted in order to match more closely the observed structur-
al behavior. Once these parameters are ascertained, prediction of the beha-

vior due to these modifications may then be made and evaluated in a quantita-

tive framework.

One of the easier ways of obtaining information of full-scale structures
is to observe the behavior under ambient wind. No excitation equipment is
needed and a good estimate of the resonant frequencies, mode shapes and even
damping ratios can be determined experimentally. Of course, only a few of the
frequencies and mode shapes are generally measured, the lowest ones correspond-
ing to lateral and/or torsional motion of each story. Movement of each story
must often be calibrated on a particular story, usually the roof, in calculat-
ing the mode shapes. Furthermore, measurements are often not available at all
the floors.

Due to these facts and also since a mathematical model of the behavior
is available from numerical procedures, identification usually proceeds within
a Bayesian framework in which the mathematical model and measured quantities
are weighed relative to each other (Ref. 1). The mathematical model used may
be of a general nature, but it is desirable to limit the number of parameters.
Within this framework, a procedure is developed in which the modified Newton-
Raphson scheme is used to optimize the objective function corresponding to
Bayesian inference, that is to match more closely the model and measurements.
Sensitivities of the resonant frequencies and mode shapes are used which de-
pend on the knowledge of only the eigencharacteristics under considerationm.
The procedure is applied to measurements of a twelve-story frame-shear wall
apartment building built of reinforced concrete located in Ottawa, Canada, for
lateral and torsional motioms.

EQUATIONS OF STRUCTURAL DYNAMICS
Normal Modes

The equations of structural dynamics assuming viscous damping are writ-—
ten as follows:

M] {x} + [c] {x} + [K] {x} = {f} (@D}
in which [M], [C] and [K] are the mass, damping and stiffness matrices respec-

tively. For no damping, there correspond the associated normal mode shapes
which diagonalize both the symmetric mass and stiffness matrices, i.e.

L}

[e]" M] [9]
[e1" [K] [9]

[1] (2)
[e7] 3

in which ' represents the transpose, [I] is the identity matrix, [92] is the

diagonal matrix of squares of undamped natural frequency, and [¢] is the ma-
trix of normal mode shapes.
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Frequency Response

For sinusoidal excitation and steady response at a frequency @
(£} = {F} ™% 4 (7} 710 (4)

{x} = {x} ¥F 4 (3% o"I5E 5)

in which {F} and {X} are in general complex vectors and * representes its com
plex conjugate, there results for the case under consideration:

{x}
[H]

(H] (F} 6
-1
61 [19°1 - 3% (11 + 13 2121 1] per %)

in which

where it has been assumed that the normal modes also diagonalize the damping
matrix, i.e.

[el" [C] [e] = 2[z] [Q] (8)
for [z] a diagonal matrix of modal damping ratios.

These expressions have been generalized to the case of arbitrary viscous
damping resulting in complex modes and to a slightly more general expression
for the frequency response expressiom, Eqn. 6 (Ref. 2). Suffice it to say
that for excitations near one of the undamped natural frequencies, the respon-
se is dominated in the corresponding mode shape when damping is small as is
normally the case. Such sinusoidal testing has been performed in a number of
structures but requires rather cumbersome equipment and deals with fitting the
frequency response function (Ref. 3).

Random Response

A much more pleasing approach is to monitor movement of the building,
say its horizontal acceleration at various stories in an ambient wind envi-
ronment. On line fast Fourier transform techniques convert these time signals
to cross-spectral densities. Knowing that the matrix of respomse cross-
spectral densities for the system under consideration is given by (Ref. 4)

s, ] = [a] 5,1 ()" 9

in which [H] is given by Eqn. 7, T represents the complex conjugate transpose
and [Sf ] is the matrix of cross-spectral densities of the loads at each sto-
ry. Unger the assumption that these are uncorrolated and have identical var-
iance, 02, this reduces to the expression that these are proportional to the
square of the amplitude of the frequency response matrix

2 h
= 10
(s, =o" [H] [H] | (10)
Since these loads are not measured, only the building motion is monitored;
all that is required is that a reference signal be recorded for each time in-

terval, for instance the motion of the top story as a calibration point. This
permits the use of only a few channels, some staying at the roof, while the
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others are moved from story to story, but not necessarily at all stories.
SYSTEM IDENTIFICATION

In order to weigh the model and measurements, the objective function,
s, corresponding to Bayesian inference, is optimized

= {d - D} [wd] {d - D}
(11)
+ {p - P}' [wp] {p - P}

in which D are the measured quantities, d, are the calculated values based on
the parameters, p, and P, are estimates to the parameters. [w,] and [w_] are
weighting matrices, usually assumed to be diagomal, suggesting that the"para-
meters and measurements are statistically independent. Normally, the diagon-
al elements are taken as the inverse of the variance of the quantities being

weighed.

Modified Newton-Raphson

A modified Newton-Raphson scheme, based on a first order Taylor series
expansion of the measurement quantities, d, deals with the following approxi-
mation to the objective function at the &-th iteration.

s =s(Y +{a" + V] (63 -D} [w]{d + [v] {6} - D}

2 (12)
+ {p +6—P}'[wp]{p + § - P}
in which § is the change in parameter and
3s
Vv, = =— (13)
i api
When optimized with respect to §, this yields the relation
fA] {8} = a (14)
in which g 2
{a} = [v]'[w,] {d" - D} + ["’p] {p” - P} : 15)
[al = [V}'[w ] [V] + [wP] (16)

Only first order derivatives of d are used in this approach compared to the
classical Newton-Raphson which requires second order derivatives as well.

Eigensensitivity

The measured quantities are the eigenvalues and eigenvectors of the
generalized eigenvalue problem which for no damping is

2
[[K] -9 [M]]{(bi} = {0} i=1, 2, ..., m 7
for m the number of measured naturai frequencies and/or modes, 92 and {¢ }

are the eigenvalues and associated eigenvectors respectively. The sen31t1vi—
ty of the eigenvalue is readily obtained by a premultiplication by {¢i}' and

310



subsequent chain rule differentiation

2 ' 13K 2 [aM
o8y Do “:ap] ! Eiﬂwi}
op (6,17 (o)

(18)

The eigenvector {¢i} satisfies the relation (Ref. 5)
. 2
3 ¢, 3Q
2 il _ [BK] 2 [am] i
[[K] &, [M]} - Q) T [M] {¢i} (19)

ap | | Lsp i Ldp
which is necessarily singular. The additional comstraint that one of the ele-
ments of the modes is constant, for instance the one at the roof equal to one,
yields an additional equation which for n, the number of stories, is

¢n =1 (20)
3¢
.——.n_ -

T 0 (21)

There results when Equation (21) is added to Equatiomn (19)

3p
in which {b} is the right-hand side of Equation (19) and

3d,
[B] 3——% = {b} (22)

0 0o o0 O

[4] = [[K} - o [M]] + 8 0 (23)

o O O o

1

in which B is a scalar multiplier to assure the relative importance of the
constraint such that [A] is not singular. The only nonzero element added cor-
responds to the floor about which the modes are normalized. The particular
nature of the matrices such as symmetry, sparsity and banded structure are
thus maintained.

EXAMPLE

Building

The building studied is a twelve-story frame-shear wall apartment build-
ing of reinforced concrete located in Ottawa, Canada. The masses are assumed
known and concentrated at each story and there are thirteen unknown parameters
in both of the horizontal and in the torsional direction of movement

K] = b, K]+ [K] (24)

in which [K,] is the analytical stiffness matrix, p;5 is a scalar factor and
[KS] is an assumed shear-building stiffness matrix having twelve interstory

springs.
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R TR 2
S - K,
| - kg A
{Ks] = o (25)
§ kjp TRy Tk
| k12 k12

Results ‘— -

The mass quantities used for the twelve story building are shown in Ta-
ble 1. It was assumed that the two lateral and torsional motions were uncou-
pled, and estimates to parameters of a shear building model were determined in
each of the three motions separately. Relative weights for the stiffness pa-
rameters, k, the measured natural frequencies, 92, and modes ¢, are given in
Table 2, together with that of a constant multiplier, pj3, of the analytically
determined stiffness matrix. These correspond to errors of about 17 except
for stiffness at 10%.

Measurements were taken during construction of the building of the first
three mode shapes and frequencies in both lateral motions X, Y, and in torsion
8. The measured, initial and final mode shapes are given in Fig.l-3. No measure-
ments were available for the third mode in Y motion. The results on the fre-
quencies are given in Table 3. Convergence was attained in less than twelve
iterations in all three instances, with the objective function reduced by a
factor of a hundred.

Table 1 - Elements of the Diagonal Mass Matrix

Mass Mass Moment of Inertia
Story (kip—secz/ft) (kip-ft-sec”®)
1-11 66.1 300 000.
12 85.9 390 000.

Table 2 - Weights

Lateral Torsional
Variable 1/02 1/02
X Y 8
K 10710 10712 10718
4 4 4
P13 10 10 10
Q 1 1 1
$ 10* 10% 10

The interstory stiffness parameters were initially set equal to zero and P13
was set equal to 2/3 in order to match the first frequency more closely. The
final values of the thirteen parameters are given in Table 4, where a negative

sign merely indicates that there was too much stiffness at that particular
level in the analytical model.
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Table 3 - Frequencies (Hertz)

X b 3

1 2 3 1 2 30 1 2 3
Initial 1.40  5.44 10.99 1 1.95 7.38 15.69 i 2.14  8.15 17.13
Measured 1.36 5.17 9.84 51.60 5.91  12.70 i 1.81  6.90 14.10
Final 1.35 5.17 9.8% . 1.60 5.91 12.90 | 1.82 6.90 14.10

Table 4 - Fipnal Parameters

—_— INITIAL
X Y 8
Ele- Parameters Parameters Parameters - FINAL
ments (2) (2) (2)
. X X X X X X X EXPERIMENTAL

kl 0.28E+06 -0.47E+06 -0.15E+09

k2 0.27E+06 -0.33E+06 -0.37E+H09

k3 0.17E+06 0.83E+05 ~0.75E+08

k4 -0.98E+05 0.17E+06 -0.33E+08

kS 0.40E+06 -0.12E+05 -0.73E+09

k6 0.43E+05 -0.11E+06 -0.16E+10

k7 0.22E+05 0.23E+05 0.26E+10

k8 -0.14E+06 0.17EH06 0.18E+10

k9 0.35EH06 0.21EH06 0.77E+09

klO -0.36E+04 -0.56E+06 -0.12E+10

kll 0.42E+05 0.14E+06 -0.18E+10

klZ 0.31E+06 0.68E+06 0.47E+10

0.6365 .6660 0.6759
P13 0 Fig. 1 - Lateral X

Fig. 2 - Lateral Y Fig. 3 - Lateral 6
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Similar results for the completed building are reported elsewhere (Ref. 7).

It should be emphasized that not all stories were instrumented and that only

a few of the mode shapes and natural frequencies were used in the identifica-
tion procedure. Once an appropriate finite element model has been adjusted

to fit more closely observed dynamic behavior, in this case resonant frequen-
cies and mode shapes, it is relatively easy to anticipate the effect of small
design changes on the dynamic response. For instance, a change in either a
story mass and/or stiffness affects the resonant frequency and mode shape ac-
cording to Egqn. 18-23. With regards to the frequency response, its sensitivi-
ty is also readily determined (Ref. 3).

CONCLUSION

The application of a system identification technique to obtain actual
physical parameters is not an easy one. Usually, little data is available;
the data acquisition procedure should not be too cumbersome and yet reliable.
Nevertheless, it is useful to modify parameters of a model, in this case a
finite element model, in order to match these data more closely, particularly
when design changes are planned. The procedure outlined here is useful in
this regard and appears to converge quite nicely, provided of course some real-
istic structural model is postulated. It is based on relative weighing of
measurements and initial parameters and utilizes efficient numerical techni-
ques for its sensitivity calculationms.
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