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SUMMARY

The relative acceleration and velocity response spectra have only
been of academic interest so far. These, however, can be used with advan—
tage as seismic design inputs in structural analysis for earthquake loads.
The methods are presented which use these spectra as inputs in the calcu-
lation of member response as well as for generation of floor response
spectra. These methods are more efficient computationally than the
methods which use psuedo—acceleration spectra as design inputs. The pre-
scription and use of relative spectra as seismic design inputs is, thus,
advocated.

INTRODUCTION

In structural analysis for earthquake loads, smoothed ground response
spectra are commonly used. The response spectrum of a ground motion is
the plot of the maximum response versus frequency of a single degree-of-
freedom oscillator subjected to the ground motion. The plotted response
quantity could be the maximum relative displacement, relative velocity,
relative acceleration, absolute acceleration or any other quantity of
interest (Ref. 1). In earthquake structural engineering the most commonly
used plot is for the relative displacement of the mass, which directly
provides the maximum deformation and thus the force in the spring. Such a
plot is called the displacement spectrum.

Directly related to this spectrum are the psuedo—-velocity and psuedo-
acceleration spectra in which the response spgctrum ordinates at a fre-
quency are just the frequency and (frequency)” times the displacement
spectrum value, respectively. These two latter spectra, that is psuedo—
velocity and psuedo—acceleration spectra, are more commonly used to char-
acterize seismic design input for design of structural systems for earth-
quake loads. To obtain design spectra, usually the spectra of several
recorded ground motions are used collectively. Smoothed out curves repre-
senting the average or other percentile values of the ensemble, have been
used as seismic design input for the design of important structural facil-
ities such as nuclear power plants, etc. See Refs. 2 & 3. Several ana—
lytical approaches have also been developed whereby these design spectra
can be directly used for the calculation of design response for the design
of primary and secondary structural systems.

The relative velocity and absolute acceleration spectra are often
referred in the literature but, so far, have only been of academic inter-
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est. Also, the relative acceleration is a quantity which enters the equa-
tion of motion of an oscillator, its response spectrum has not been of
even academic interest until very recently. The recent research by the
writer and his associates (Ref. & & 5), and also by Hadjian (Ref. 6) has,
however, shown that the relative acceleration and velocity spectra are as
important as psuedo-acceleration spectra. In fact it has been found that
there are some distinct analytical advantages in the use of relative
acceleration and velocity spectra in lieu of psuedo-spectra in the calcu-
lation of seismic design response of primary and secondary structural sys-—
tems. These extended applications are described in this paper.

DESIGN RESPONSE AND RESPONSE SPECTRA

For a single degree-of-freedom structure, a response spectrunm
directly provides the design response like the maximum design force in the
structural member without any special analysis. For a multi-degree-of-
freedom (MDF) structure, however, the structure must be analyzed by the

modal analysis approach to use response specra in the calculation of
design response. For a MDF structure subjected to base acceleration,

xg(t), the equations of motion, written in standard notations (Ref. 7),
[ &x) + [C] (R} + [K]{x} = ~[M] {x}x () (1)

are decoupled into modal equations. If [C] is a classical matrix, then a
decoupled modal equation is of the following form:

. . 2 .

v, + 2R.w. v, + w,v, = —y.x (t

J EJ R 33 YJ g( ) 2)
in which v. = jth principal cordinate or mode displacement; and
f;, w, and”y., respectively, are the damping ratios, natural frequency and
pgrtigipatioﬂ factor of the jth mode. If [C] is not classically damped,
Eq. 2 can still be decoupled if complex-valued damped modes are used in
the transformation to the principal coordinates. We will not pursue such
a case here.

A response quantity S(t) of design interest can now be obtained as

.

N
s(t) = jz,l Z5 v (3

in which C; = modal response which is linearly related to the eigenvectors
or mode shipes of Eq. 1, and N = the number of degrees-of-freedom. The

modal displacement V3 is obtained from the solution of Eq. 2 as
t .
v.(t) = vy. -
(0 = v, fo % (D (c=7) dv )

in which hj(t) is the impulse response function of Eq. 2.
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To obtain design response, X_ must be considered as a random process
to account for all possible groung motions. We will assume x (t) to be a
stationary random process for analytical case. It has been vBrified by
simulation study that this assumption is acceptable. Furthermore,
considering the stationary value of the response, the maximum value of
S(t), i.e. design response, Sy, can be written in terms of its mean square
value and its peak factor, C, as

2 2 ¥ X =
= *
Sy =¢ 2 _X cjgkyjyk [ @g(w) Hj(w)Hk(w) dw (5)
j=1 k=1 -
where & (w) = the spectral density function of the ground motion. To

obtain,®the design response in terms of response spectra, the following
relationships between design response spectra and spectral density func-—
tion are used.

2 4 2 2
c, f mjéé(ublﬂj(ubl dw = Raj (6)
2 . 2 2. 2
Cy [ w i’g(w) IHj(w)l dw = R03 '€))

where Ry ; and Rv" respecively, are the psuedo-acceleratin and relative
velocity spectruﬂ values at frequency w, and damping ratio £, ; and Ca and
C, are the peak factors for psuedo—acceferation and relativejvelocity
response of the oscillator which when multiplied by the root mean square
responses give their response spectrum values. The peak factors C, C, and
Cy will in gemeral not be the same. However, extensive numerical simula-
tion studies has shown that assuming them to be equal does not introduce
any significant error in the calculation of design response. Thus here
they are assumed to be equal. To use Eq. 6 and 7 in Eq. 5, the latter is
split into terms with j=k and j#k to give the following

2 2.2
S, = YR L/ w, + 2 . .
p 2(«:3\(J .t ) j 15855
j j k=3+1 (8)
2 2 2 2
[AlRaj + Rvj + AR+ AR ]

where Ay, Ay, A3 and A, are coefficients of partial fraction (Ref. 8).

The terms with single summation represent the popular SRSS mode response
combination rule. The double summation terms improve the results and in
some cases they must be considered to obtain the correct design response.

It is seen that in the double summation terms we need relative velo-
city spectra. Often the relative velocity spectrum value is assumed equal
to the psuedo velocity spectrum value, especially when the former is not
available. This assumption is reasonable if the dominant structural
frequencies are within the range of the excitation frequencies. For the
dominant structural frequencies higher than the excitation frequencies,
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this assumption can lead to significant errors in the calculated response
(Ref. 4).

It is precisely in these cases that the relatiYe accelera?io?fspectra
also play an important role. When a response quantity has a 31gn}‘t§ant .
contribution from the high frequency modes, the terms associate yl suc
modes in Eq. 7 must be retained, otherwise sizeab}e errors are li&gly ;i ~
be introduced in the calculation of response. This 51tu?t10n can. e alle
viated if Sy is expressed in an alternative form,'employlng relative
acceleration spectra rather than psuedo—acceleration spectra.

For this, with the help of Eq. 2, .Eq. 3 is re-written in terms of
modal velocity, Vj’ and acceleration, vj, as

£. . . .
s =- 13 Ty e (D) + 2850,05 + vy} €))
3
The root mean square value of this quantity when multiplied by Fhe peak
factor gives the design response. This value can be expressed %n terms of
¢, spectral demsity function and modal frequency response function. After
some simplification, the design response can be written as (Ref. 4)

2 _ o2 22002099 2 RZ -R2
s3 = 82+ T (Lyvy/u) P12u (128 R] R ]

5%k Yive 2 2.2 2 2. 2
2] ] [ (1-4B DR, s (14 BO Ry,

ijk
2 2 2 2
- + -
+ Blej+BSRvk+(B2 l)Rvj (B4 1)Rrk] (10)
where By, By, etc., are the coefficients of partial fractions (Ref. 4),
Rrj is the relative acceleration response spectrum defned as

2 7 4 2. 2
C f—mmd)g(w)lﬂj(w)l dw = R, (11)

and Sy = the response calculated for the inertia forces corresponding to
the maximum ground accleration applied statically on the structure.

It is seen that Eq. 10 uses relative acceleration and relative velo-
city spectra as seismic design inputs. The main advantage of Eq. 10 over
Eq. 8 is that the modes with frequencies higher than the input frequency
can be excluded from the summation without affecting the accuracy of the
results. That is, higher modes need not be obtained explicitly in this
procedure and only a first few modes are adequate. Thus, the method is
more efficient computationally especially for stiff-structures or where a
response quantity receives significant contribution from the higher modes.
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For usual cases also, i.e., where the dominant modes are within the
range of input motion frequencies, this method provides a more accurate
response than Eq. 8 for the same number of modes used in the analysis.
This is due to a very desirable characteristic of relative acceleration
spectra. Fig. 1 shows averaged psuedo-acceleration and relative accelera-
tion spectra obtained for an ensemble of synthetically generated accelero-
grams. For higher frequencies, the psuedo acceleration spectra approach a
constant value equal to the maximum ground acceleration. On the other
hand, the relative acceleration spectra diminish very fast for frequencies
higher than the highest frequency in the input. Thus omitting the modes
with frequency higher than the highest frequency wave in the input will
cause a smaller error in the approach which employs relative acceleration
spectra as input, i.e. Eq. 10, than the one which uses psuedo—-spectra as
input, i.e., Eq. 8.

RELATIVE SPECTRA AS INPUT FOR GENERATION OF FLOOR RESPONSE SPECTRA

Similar advantages are realized when relative acceleration and rela-
tive velocity spectra are used as input in generation of floor spectra.
The expression of floor response spectrum value which uses relative spec-—
tra as inputs is obtained when the absolute acceleration of the floor,

x (1) is defined as

. . . . N .
X (u) =x +x =x + . v, 12
LW =X fxo=x _jl HORP (12)
J-—
where x = relative acceleration of floor and ¢.(u) modal displacement of

the floor. However, if Eq. 12 is defined in tefms of modal displacement
and velocity as

. . ) .
x, (w) = ) ¢j(u) (wjvj + zsjwjvJ) (13)

the floor spectrum expression is obtained in terms of psuedo—acceleration
and relative velocity spectra. Eq. 13 has formed the basis for the
development of floor response spectra generation techniques developed by
various researchers so far. Using the acceleration defined by Eq. 12 as
the input to an oscillator on the floor the maximum value of the oscilla-
tor response, that is, the response spectrum value is obtained as:

2 2042 _ o2 2 .2
Ra(ub,Bo) = rm[Ag Rr(QB) + 2 oy Rv(wo)]

6. {21 A +v. 6. A} & R2(w)
Y3 95 m 1T Yy %5 R % Rt %

n
+ ]
j=

1
+{2rB+Y¢B}R2(w)
m 1 i tiT2" T3t o

. 2 .2
+ {2 T c1 + yj ¢j cz} w Rv(wj)
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2
+ {2 r D1 + Yj ¢j Dz} Rr(wj)}]

n n 2 RZ
+ 2 5 2 Yj Yk ¢j ¢k [wo (Aj + Ak) s V((,L)o)
3=1 k=3+1

2 2 2
+ BB Ralay + o 05 R (0 + O Ry(w))

2 2
+ Dj Rr(wj) + D R ()] (14)

A., B. ..., A, B , etc. are the coeffic-

where Ay, By -+, Ag, By eeey Ay j

ients of partial fraction (Ref.’5), Ra(w ,Bo) = absolute floor accelera-
tion response spectrum value for an osci?lator of frequency w_, and damp-
ing ratio B . For stiff structures and generation of floor spectra for

floors closé to base, Eq. 14 is much more efficient than the approaches
which use psuedo acceleration spectra as inputs in as much only a first
few modes need to be included in the analysis with this approach. ‘The
floor spectra expressions based on Eq. 13 will require a large number of
modes to achieve the same accuracy of the calculated spectra. For other
situations where high frequency modes are not necessarily predominant,
both approaches, i.e. Eq. 14, and the approdaches which employ psuedo-—
acceleration spectra will be equally good. Still, however, for the same
number of modes to be used in an analysis, Eq. 14 will provide a more

accurate value of response.

In Fig. 2 are shown the floor spectra generated for the floor close
to the base of a 30 degree-of-freedom sttucture by the two approaches:
Only first four out of 30 modes were used in the analysis. The upper
curve is obtained from Eq. 14. This curve did not change much when all 30
modes were used. The lower curve was also obtained with 4 modes but
employed an approach where psuedo acceleration spectra were used as the
inputs. When all 30 modes were used in the latter approach, the floor
spectrum curve coincided with the upper curve. This clearly shows the
efficiency of the approach which employs relative acceleration and
velocity spectra as inputs, such as Eq. 1l4.

CONCLUSIONS

The relative acceleration and velocity spectra, which have not been
of much structural design use so far, however, have been shown to be
better alternatives to the commonly used psuedo-acceleration spectra as
seismic design inputs. These relative spectra can be used as design
inputs for the calculation of design response of primary structures as
well as for development of seismic design inputs for secondary systems in
terms of floor response spectra.
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