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SUMMARY

A study of the rocking response of a rigid block on a rigid plane
subjected to a horizontal sinusoidal model of seismic acceleration has
been made. It has been observed that, starting from rest, the block top-
ples for certain combinations of excitation amplitude and frequency, while
steady states are attained for other combinations. Thus, a safety criter-—
ion can be established. Furthermore, the results which pertain to the
harmonic excitation case can be used as the basis of an approach to pre-
dicting toppling of a block subjected to seismic shaking.

INTRODUCTION

The destructive power of earthquakes with regard to structures or ob-
jects that can rock and topple is well known. Despite this danger, finan-
cial considerations often make it necessary to continue building in seis-
mically active regions of the world. Thus, it is essential that a proper
study be made of the behavior of those structures under strong ground
shaking. This study aims to improve the current state of understanding of
this rather complex dynamic problem. For this, a simple harmonic function
will be used to model the ground shaking.

HARMONIC SEISMIC MODEL

Equation of Motion

A two-dimensional model is shown in Figure 1 of a rigid rectangular
block which is free to rock, without slipping, on either of its base cor-
ners. The foundation is a rigid horizontal plane, which is excited in
the horizontal direction relative to an inertial frame of reference. The
vertical component of the foundation displacement is neglected for simpli-
city. Moreover, this simplification may be justified by the fact that,
statistically, earthquake records show much smaller vertical than horizon-
tal components. Taking moments about corner O, the governing equation of
motion for the block O is written in the form

I08 + megcos(Bcr - 8) + mgR sin(@Cr -8) =0 3>0 (1)

In this equation, I, is the moment of inertia of the block about O, 6 is
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the clock-wise tilt of the block, 8., is the critical angle which separ-
ates toppling and recovering of the block in the static case, m is the
mass of the block, R is the distance from 0 to the center of mass of the
block, g is the gravitationmal acceleration, and ¥, is the horizontal
ground acceleration. Similarly, the rocking abou% 0', for which 6 < 0, is

governed by the equation
I8+ megcos(ecr + 8) - mgR 31n(8cr +8) =0. (2)

The transfer from rocking about one corner to that about the other is ac-
companied by an impact. The associated energy loss is accounted for by
reducing the angular velocity of the block after impact. Specifically, it

is assumed that
S —
6(t’) =e 6(t) , 0Ses1, (3)
. . + . . . .
where e is the coefficient of restitution, t is the time just after im-

pact, and t~ is the time just before impact.

The nonlinear equations (1) and (2) can be linearized when 6 and ecr
are small, Specifically, they reduce to

Ioe + meg + ng(Gcr -06) =0 ; 6 >0, (&)
and
Ioe + meg - ng(ecr +06) =0 ; 6 <0 . (5)

In (Ref. 1), it is shown that overturning occurs when two empirical
criteria are satisfied. First, the peak ground acceleration must be at
least equal to the acceleration that initiates rocking. Second, the max-
imum ground velocity must be greater than 0.4 times the sudden velocity
change that just causes toppling, if the excitation were a step velocity
function. These criteria should be viewed as a first approximation to the
exact solution since they do not account for changes of ground accelera-
tion and velocity after the initial rocking. Using a half sine-wave to
model ground acceleration, the authors of (Ref. 2) and (Ref. 3) produced
a criterion for toppling during the first uplift. Clearly, the criteria
of (Ref. 1) and (Ref. 3) are independent of the coefficient of restitution
(e). However, when an impact occurs the magnitude of the coefficient of
restitution becomes important in subsequent rocking or toppling. Thus, it
is logical to seek conditions for toppling for a block which reflect the
significance of the coefficient of restitution and involve more realistic
models of ground shaking. Specifically, the ground acceleration is ex-—
pressed as

%; = Agcos(wt + ¢) , (6)

where A is the nondimensional amplitude and ¢ is the excitation phase.
Then, the nonlinear equations of motion become
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IOG + mgRAcos(wt + ¢)cos(6cr - 8) + ngsin(Gcr -6) =0; 6 >0 (7)
and

IOG + mgRAcos (wt + ¢)cos(6cr + 6) - ngsin(Bcr +6) =0 ; 6§ <0 (8)
Furthermore, the piecewise linear equations become

Ioe - mgR6 = - mgRAcos(wt + ¢) ~ ngecr 3 8 >0 (€))
and

Ioe - mgR8 = - mgRAcos(wt + ¢) + ngGcr ; 8 <0 . (10)

The general solutions for (9) and (10) are

+ + . +

6 (t) = a sinh ot + b cosh ot + ecr + Becos(wt + ¢) , (1D
and

8 (t) = a sinh at + b cosh ot - ecr + Beos(wt + ¢) , (12)
where the superscript (+) indicates validity for 8 > 0, and the super-
script (-) indicates validity for & < 0. Furthermore, a*, b, a~, b~
denote arbitrary constants, and &, B are defined by the equation

a? = ng/l’o s (13)
while

8 = Aa?/(0® + w?) . (14)

Response Under Quiescent Initial Conditions

In order to find conditions for toppling, transient responses of the
system with quiescent initial conditioms, 6(0) = 0 and 6(0) = 0, are com—
puted. By varying the excitation amplitude (A) and the frequency (w), the
results are conveniently plotted on the (A) versus (w) plane. This proce-
dure can be applied to a model with any combination of parameters. Here-
in, the model of (Ref. 4), with the specifications R = 9.84 ft (3 m),

H/B = 4, O8or = 0.245 rad, m = 2.2 1b (1 kg), Iy = 284.8 1b sq ft

(12 kgm®), g = 32.2 ft/s?® (9.81 m/s®), and o = 1.566 is used. Note that
taking m = 1 kg is not restrictive since the numerical results can actual-
ly be provided in terms of the ratio I,/m. Throughout this paper all the
transient responses are calculated with ¢ = 0, but results corresponding
to other logical values of ¢ are similar to those presented herein. The
transient responses for this model are shown in Figure 2. Examining the
nature of the response in the (A) versus (w) plane, two points can be
made. First, there is a "'safe" region in which the responses are stable
and approach steady states. Second, the stable steady states are of
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several types, to be defined shortly, which occupy definite regions of
their own in the plane. Thus, from the first point, a safety criterion
can be established. That is, for a rigid block rocking on a rigid founda-
tion subjected to harmonic horizontal ground accelerations, (A) and (w)
must lie within the '"'safe" zome in Figure 2 to avoid toppling of the block.
Note that the ''safe' region expands in the (A) direction as (w) increases,
signifying that the block becomes increasingly robust against toppling as
the excitation frequency increases.

In (Ref. 3) a continuous curve that separates the '"'safe'" and the "un-
safe' zones was produced, based on the response of an initially quiescent
block to a half-sine wave pulse excitation. Such a curve is drawn on Fig-
ure 2 for comparison.

To examine the accuracy of the piecewise linear solutions, all the
transient respomnse calculations are repeated using numerical integration
to solve the exact linear equations of motion. Figure 3 shows pertinent
numerical results; they are almost identical to those obtained by using
the piecewise linear equations of motion. Note that the small regions of
the less prominent modes do not necessarily overlap. As far as computa-
tion time is concerned, the numerical integration of the nonlinear equa-
tions of motion requires approximately ten (10) times more than the solu-
tion which is based on the piecewise linear equations

It has already been mentioned that a variety of steady state models
are observed; it is necessary to distinguish them. A steady state mode is
called the (m,n) mode, where m,n are positive integers, if the mode has a
minimum repetitive interval which equals n periods of the harmonic excita-
tion and, during that interval, executes m cycles of oscillation. The
(1,1) mode is also called the fundamental mode since it is predominant and
has the same frequency as the excitation. Note that the system exhibits,
as well, steady state modes which have non-zero means. Hence, the
terms symmetric, zero mean, and unsymmetric, non-zero mean, are used as
additional qualifiers. The (1,n) modes are called subharmonics since
their frequencies are equal to 1/n times that of the excitation. Similar-
ly, the (m,1l) modes are called superharmonics because their frequences are
m times that of the excitation frequency. Finally, for modes which have
neither m nor n equal to 1, they are called, for convenience, combined
modes.

The most prominent mode observed is the symmetric fundamental (1,1)
mode, and the next most common mode is the subharmonic (1,3). Much
scarcer is the unsymmetric (1,1) mode which has a pronounced non-zero
mean. Other modes observed are the unsymmetric combined (2,2), the sym-
metric combined (3,3) and some other higher order (m,n) modes, all of
which are quite rare. Note that, within the range of (A) and (w) invest-
igated, no superharmonics have been found.
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It is interesting to know how the "safe' region and the tvpes of
transient responses change with different values of the height to base
ratio (H/B) and the coefficient of restitution (e). Thus, Figure 4 shows
the kinds of transient solution for e = 0.6, H/B = 2, using the piecewise
linear equations, while Figure 5 shows those corresponding to the nonlin-
ear equations. Again, the agreement is quite good, proving that the piece-
wise linear equations describe the dynamics of the rocking block adequate-

ly.

Combining several numerical data, Figure 6 shows the "safe'" region in
the (A) versus (w) plane for various values of (e) and (H/B). As might be
expected, the "safe'" zone increases as (e) and (H/B) decrease. This is
because the block becomes more resistant to rocking as a result of the
greater energy dissipation, and the greater restoring moment with decreas-
ing (e) and (H/B) respectively. The corresponding curves of (Ref. 3) are
also drawn on Figure 4 and Figure 6, for comparison. Clearly, these
curves are not influenced by the coefficient of restitution (e) and there-
fore do not accurately predict the "safe" zone. It is also found that as
(e) and (H/B) are reduced from 0.95 and 4, respectively, the symmetric
(1,1) mode increases in dominance at the expense of the symmetric (1,3)
mode, to the effect that when e = 0.6 and H/B = 2, the (1,3) mode is com-
pletely displaced in the (A) versus (w) plane investigated.

Application for Real Seismic Motions

With regard to the applicability of the presented results to real
seismic motions, (Ref. 1) can be used. In this reference, it has been
demonstrated, through simulations, that the maximum velocity of an earth-
quake record can be used as a criterion for toppling. With that aim,
Figure 7 shows the types of responses plotted on the velocity amplitude
versus excitation frequency plane, (Ag/w) versus (w), for e = 0.95 and
H/B = 4. Also shown is a curve which separates the "safe" and 'unsafe'
regions. Clearly, there exists a lower bound for the critical velocity
amplitudes. Therefore, a reasonable criterion would be that toppling is
not likely to occur if the maximum ground velocity of the earthquake is
less than the lower bound of the critical velocity amplitude. Figure 8
shows the 'safe" and "unsafe" regions, and the lower bounds of the criti-
cal velocity amplitudes for various (e) and (H/B) together with the bounds
based on (Ref. 1). It is readily seen that the variation of the coeffi-
cient of restitution causes shifting of the bounds of the 'safe" region;
this is not reflected in the criterion of (Ref. 1).

CONCLUDING REMARKS

A study of the rocking response of a rigid block on a rigid plane
subjected to a horizontal sinusoidal model of seismic acceleration has
been made. First, by computing the transient responses of the system
with quiescent initial conditions for various values of excitation ampli-
tudes (A) and frequency (W), it has been possible to determine safe, no-
toppling, and unsafe regions in the (A) versus (w) plane. Second, a
safety criterion has been proposed for real earthquake excitatiomns,

255



specifically, the lowest velocity amplitude of sinusoidal excitation which
causes toppling isset as the upper bound on the peak velocity of the real
earthquake motion if toppling is to be avoided. The proposed criterion is
deemed as an improvement on that presented in (Ref. 1). The improvement
is associated with the fact that a harmonic function is a better, albeit
still poor, approximation to an earthquake velocity record than a step
function. It must be emphasized that this criterion is based on simula-
tion data, and additional work needs to be done to test its reliability
and level of comservatism. Note that piecewise linearization of the non-
linear equation of motion has been used in producing most of the results
shown in Figure 2 through Figure 8. The reliability of this approxima-
tion has been tested by employing numerical integration of the nonlinear
equation of motion; it has been found quite acceptable even for values of
(H/B) as low as two.
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