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SUMMARY

A simple approach to the nonlinear analysis of rigid-floor, unsym—
metrical single-story systems subjected to three translational components of
ground motion is presented. The conventional concept of center of rigidity
is extended by introducing the notion of axial center of rigidity. The non—
linear structure is idealized as a sequence of piecewise linear systems with
successively changing stiffness properties during earthquake response. The
equations of motion are formulated with reference to the dynamic principal
rigidity coordinates; both geometric and material nonlinearities are con-
sidered. An example of application of the corresponding algorithm shows the
economy and efficiency of its execution on a microcomputer.

INTRODUCTION

The single-story system is represented as a horizontal rigid-body
floor standing on a number of supporting elements of arbitrary location and
orientation in plan (Fig. 1). These column elements are assumed to offer
resistance to lateral sway in any direction through shear forces associated
with bending--like classical shear-beam elements-—but in this model, they also
offer resistance to axial deformation like conventional truss elements. End
cross-sections of supporting elements may yield during earthquake response.
The element local torsional stiffmness is neglected. This analytical model 1is
believed to represent the major components of the overall spring resistance
of the structural system.

FORMULATION OF SYSTEM STIFFNESS

The structural system behaves in the elastic range as if composed by two
parallel and independent parameter arrangements: the lateral-torsional (L-T)
and the axial systems. However, as soon as yielding occurs at any element
during the response, a strong interaction between both systems takes place,
inducing a complex dynamic variation of the instantaneous system stiffness
properties.

Ayre's description of the L-T system (Ref. 1) can be generalized after
some algebraic manipulation to obtain the location of the L-T center of resis-
tance (4,b), the principal translatory and torsional rigidities (Kl’Kz’Ktz)
and the principal directions of rigidity B,B+n/2, for an arbitrary distribu-
tion and orieuntation in plan of the supporting elements.

To introduce the axial system, we apply the theory of unsymmetric bend-
ing (small displacement kinematics) to the analytic model of the single-story
system as presented in Fig. 1.
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We define the axial center of rigidity as a point in the plan view of the
floor such that when a force acting along a vertical axis through this point
is applied to the rigid-body, it experiences pure vertical tr§n§1§tion (no
rocking). We also define the axial principal directions of rlglquy as those
wmutually normal directions going through the axial center of rigidity such
that when a bending moment vector is applied to the rigid-body floor along any
one of these directions, it experiences pure rocking in the same direction
(no vertical translation, no rocking in the orthogonal horizontal direction).

Then, if kz. is the axial stiffness of element (i), the system vertical
i

translatory stiffness is given by K = Z kz, QD)
i

and, the axial center of rigidity is located by
a={) kzi'ai)/K3 ; b= (Z kzi'bi)/K3 (2)
i i
The relationship between the effective bending moments applied at the
axial center of rigidity in global directions and the corresponding rocking
displacement coordinates is

_1 r—
r My Rox —ny exl
r 5 = 3 < (3)

4= (Rl or 3 Lo |
M -R R
Lty | Txy Ty | Sy
[R] is the instantaneous rocking stiffness tensor with components given by
=5 2 _ 2y (T2
Rxx = ] kxgoy; = Lk, +b7) = Ky+(B)
i i
= ex? = T(rz.ea2) - R.+(a)2
Ryy = Z kz, ex? Zkkzi ai) K, (a) (4)
i i
Rxy = % kz ex vy, = i[kzi-ai'bi] - K3'(a-b)

Let (;,9) be the axial principal directions of rigidity (Fig. 1), then,
by tensor transformation, the directioms of x and y, are determined by

-1 2R
~ % ~ Lo
B = 1/2<tan [— E——_:-%——] (BEB and (3 + EJ (5)
x= yy
and the principal components of the rocking stiffness tensor are obtained as
rRxx + %yy Rxx - Ryy > =
K=t 3 )+ ( 5 Jecos 28 - ny'sin 28
R R, R,
= (XX * yyy _ XX - yyy, - ees -
Kty ( 5 ) ( 7 ) cos 2B + ny sin 28
Rgy = 0 (6)

Thus, Fig. 1 represents the resulting analytical model, with stiffness
matrix
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The element axial forces can be recovered at the end of each time step
during dynamic response by means of the expression

(M; v M . X, FZ)
Pz, = kz, - + = (8)
1 1 Ktx Kty K3
;.—] cos é sin é PoTa T2
. 1! ! Y i
w1th, : . -/: % . . ,_(1 k.—. ‘>> (9)
yij L:sin B cos %j ipi~j b_

<FZ, M;, M§> are the effective earthquake forces.

FORMULATION OF SYSTEM INERTIA

Control over element force response during earthquake action-—an analysis/
design consideration of utmost importance-—is straightforward if the system
equations of motion during any given finite time step are referred to the
instantaneous principal rigidity coordinates so that, in general, the frame of
reference varies during dynamic response. The resulting stiffness matrix is
diagonal and the mass matrix referred to the principal inertial coordinates is
transformed congruently:

— | R
1 0 o0 | 0 0 Vitm,
i -
1 0 0 0 Vi
! ~ ~
= 1, - V,*ng V,en, 0
M= M- - - - I e il (10)
| ~ A ~
| (Upemg)™ + 08 (Y, ng)(V,om,) + 82 0
| . 2
i (Vyem, )" + SC 0
| 2 2
sYMM Yll T Tzl (6x6)
where, Vl Position vector of the lateral-torsional center of rigidity

with respect to the principal inertial system.

V2 Position vector of the axial-rocking center of rigidity

- with respect to the principal inertial system.

n s (cos a, sin @) ; n, (- sin o, cos a) 3 n, L 0

34 : (cos B, sin B) 3 ng (- sin B, cos B) ; ng L n,

cs r2 cos2 B + r2 sin2 B 3 SC : rz sin2 B + r2 cos2 8
xx vy xx vy

s2 L (rz -2 Jesin (28)
2 yy XX
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SYSTEM EIGENPROPERTIES

The formulation of the free vibration equations of motion of each
independent system leads to the determination of its eigenproperties during
a small time interval. For the lateral-torsional system, for example:

2 b (o |
o |
g 1o (yymy)ix, | 1
x
2 L N | )
a - 1 "(Yl'“l)/rzz T,y =0 (11)
2 2 ,
2, syMM 1+ (’Yll/rzz) | %
[

where, Q% = ki/mi’ AL is an eigenvalue and <¢l¢2¢6> is a homogenized eigenvector.

3
Eigenproblem (11) has the characteristic equation ) ci(k )3 =9

1=0
~ 2 ~ 2
V., en V.en
r ~1 "2 2 ~1 71 2 2
wmere, e =15 e = -{[1+ (12 e v [1e By el v o}
2z zz
22 2 2 (2 . 2) . - 20202
c, = ngy (1 + (‘Yll/rzz) )+ %, (Qx + Qy) N Qxﬂiﬂez (12)
and has normalized eigenvectors
V. en V. en
L 1 ~1 "2 1 ~1 1
?,i=<— 2 ‘(r J! 2 .(I' );1> (13)
(l QX) zz (1 .81) zz
Ak AL
i i

Standard Newton-Raphson procedure on the characteristic equation gives
very efficiently one eigenvalue as precisely as desired. If the starting

value is the Argand solution of the cubic: Xl = 2 V-Q cos G;)

3 2
. ! _ %% 3 9 2 C1
with, 8 = cos = ( R//_Q3) 3 R=—¢" -5~ (’3] 3 Q= —5 - 6—5) (14)
After synthetic division, the remaining eigens are given by
2
c, + A c, + A
T TS LN 17 My 2
pY (__~____2 ) _\ﬂ—-—z ) (A + e A *e,) (15)

MATHEMATICAL FORMULATION OF NONLINEARITIES

Material nonlinearity is modelled by the incremental theory of plas-
ticity as applied to the behavior of member end cross-sections, where
yielding is assumed to be confined--spreading of plasticity is not allowed
--so that the selected yield surface may strain-harden kinematically as
conceived by Ziegler (Ref. 2). We plug a simple yield surface in this model:
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Fx~ax2 iy_ayz F, - a,
¢.= . ——— =
i ) B s A (16)
X0 yo zo
with gradient N = <2Qx’ 2Qy, Qz>
2 2
h N = |F - . = - . =
where, Q ( n ax]/Fxo 5 Q (Fy ay)/Fyo 5 Q, = U/F, an
<ax, o, az> describes the current position of the yield
surface center in the force-space of member i
and <Fxo’ Fyo’ on> describes the acting-alone yield forces

for the cross—section of member 1

The structural system is assumed to behave linearly during each small
time increment with the modified element stiffness properties obtained from
the theory:

* _ _ 1.7 T
k= .lii {Ei Ny Ei}/gi

. 2 2
where, € = 4k _.Q (1 + v) o+ b Q) (1 + Yy) + kzin (1 + Yz)

]

Y5 (strain-hardening coefficient j)/kji (18)

and_Ei is the element stiffness matrix from the previous time step.

P-A effects are represented in a simple form by means of a linearized
geometric stiffness matrix (Ref. 3)

k. . = - (wi B Pzi) . 1 1 % where Wi is the dead load (19)
—Gi h ‘ 0 E supporteéd by the element
L d
Then, k. 0% = ¥ + &k which is updated stepwise (20)
1 —i —Gi 2 :

The process is entirely consistent for elastic behavior. However, when
yielding takes place, small off-diagonal coefficients appear in E§OT. This
matrix is then diagonalized in a work equivalent sense to enforce consistency
with the element analytical model.

EARTHQUAKE ANALYSIS

Modal analysis for the finite time step (Ref. 3) leads to the uncoupled
differential equations of motion

. . S A
Qi * 255090 Gip * hiptin T ik Liy%y
.- . A
r =
and q., + (Z,iwi)A UGa * MaYa ;zizagz (21)

where,gi?, are the earthquake participation factors, a . are the input ground
1 - - .
accelerations, damping is assumed linear viscous and orthogonal, and the eigen-—

. . T LCR W . wCR = M§
vectors are normalized in such a way that ?iL EL ?jL = ?iA <5A ?jA M i3

(22)
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The exact solution to egs. (21) at the end of At is easily derived if the
time increment is taken such that the three components of gr?und acceleration
vary linearly during the whole interval. The initial conditiomns for Fhe no?mal
coordinates must be cbtained from the response at the end of the previous time
step (Ref. 4), and transformed to the updated system of reference. The element
internal forces must be recovered in incremental form.

COMPUTER IMPLEMENTATION

We developed a microcomputer capability in structured COMPILER BASIC
(IBM-XT with runtime module) for the automatic execution of the algorithm being
discussed. This program comsists of a preprocessor, a processor, a§d a post-
processor. Each of these components is loaded sequentially into main memory

during execution by a process of chaining.

The preprocessor allows fast and interactive input of building random
access datafiles, so that after each amalysis, the user may change supporting
element properties and proceed to a new analysis. This feature helps the
analyst to study particular sensitivities in the object structure and to
construct parametric graphs. The processor does transient analysis for the
assigned input accelerogram set and stores the results in output datafiles
created dynamically during execution. The postprocessor drives an EPSON MX-80
printer that plots the time-histories of response requested by the analyst.
Options presently implemented include the displacement response of the L-T and
AXTAL centers of rigidity, the displacement response of the CG of floor, the
variation of CR's locations and principal directions or rigidity, the effective
earthquake forces applied at the centers of rigidity, and the time-history
force response in elements selected by the analyst.

Fig. 2 presents the plan view and supporting element characteristics of
an application example. This L-shaped system is subjected to the first 10 secs
of the El Centro (1940) accelerogram set in directions A,B and vertical respec-
tively. The processor execution time was 30 min. for the nonlinear problem.
The linear-elastic version of the program executes in 4 min. Fig. 3 shows some
representative examples of the final graphs rendered by this program.

CONCLUSIONS

An engineering approach for the 3-D earthquake analysis of nonlinear
single-story systems has been presented. The method models the interaction
between L-T and axial responses. Although the corresponding computer program
is still in experimental phase, its execution in a microcomputer indicates
that the method is efficient and very economical, and looks promising for the
advancement of research and engineering practice.

REFERENCES

1. Ayre, R.S., "Interconnection of translational and torsional vibrations in
buildings," Bulletin of the Seismological Society of America, Vol. 28, No. 2,
April 1938, pp. 89-130.

2. Padilla-Mora, R. and Schnobrich, W.S., "Nonlinear response of framed
structures to 2-D earthquake motion," Civil Engineering Studies, Structural
Research Series #408, University of Illinois, Urbana-Champaign, July 1974.

3. Clough, R.W. and Penzien, J., Dynamics of Structures, McGraw-Hill, 1975.

4. Bathe, K-J. and Wilson, E.L., Numerical Methods in Finite Element Analysis,
Prentice-Hall, Inc., 1976.

232



‘001
"

Loy

L]
4

veuE
667 LL

€
1

[} ‘o8
a1 ‘0¥
‘ol ‘ol
‘005t “oosi
0'¢ 0's
a'¢ (81
0 0
‘o oS
‘o0l “oot
‘eor C001
vitue @1°se
6628 (L't
T 1

1 1

ajdemxy wo}1wf1ddy uy sinewa)y Tu

o ey oy o oy o o oy o) * s,
[ I Y B t R T t ‘T o £ s,
L S R I3 3 2 t T () * e,
. . '
08 co0r (008 00 oy coov ooy ooy (3) "ses pawy-nis
«
Yo o Yo o [ 284 [ %3 [} [ 33 m: 11203 pavy-130
MY o'e 0'¢ o't o to o o Amhu luuicu pavy-a3e
ICLE°0 IS0 SISO ICLSTO 9CISTO SGLS'O LD 9CLE'O e darienianie
L B Y Y R R € o]
‘
R TR K e ces or ot S
v oy os cos g ' K] ‘v "
VTR ML 609 eySS 89TM YO ei's verr (uy &
6625 L'WY EYS9 CE'SS  NI9 YE'95  69°6C  69°ve tn »
e ‘, ’ s, AN < no ' uama |y Njrr0ddng
314NYXI  NOIIYDITddY Z D14

WI1SAS AHOLS-319NIS 1 "914

PnSEa we—e

233



BRET OWU) [T i UOTHON punouy
§ jUaMa[a Jo asUodsay aodoy [ewlajy]

L1

e g PNy, .
A A AR oty Wi

pzen ks

JUZMA[2 U0 0] [RIXY 1

LA 9

LA
M
-
"
JUIHITA U0 X 340§ deay§ [edIautdg el
Ah6T  OJjUE) [T & UOTOK punauy
0014 J0 97 U0 3004 b a130RFT 4
-M6666°666-
}
46666’ 666
¥0 'TYIXY U0 g juawoy Gutpuag 33 4]
-ngeac-
1}
98T
1|

L3 1F)

BET 0djua) I3 ;0 3. punod)

01
§) 1-7 Uo asuedsay by aA1303f3 q-¢

1 989-

1089

¥Bg-

L[
A0~

¥ 1-1 U0 T #0d0 B an139ajyT [edjuryg

BT LI 13 5 toLioy punon)
50 J00[§ J0 dsuddsad’ JUsHBOE[ds1q -

L1

9) doof{ Jo | uoyje[sura] [edioutgy

234





