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SUMMARY

The analytical model for the single-story system introduced in the com-
panion paper (Ref. l) is extended to describe the linear elastic behavior of
multistory building systems subjected to three-translational-component ground
motions. The structural dynamic characteristics are obtained by perturbing
the eigenproblem of the corresponding two-fold symmetric building system
(Refs. 2, 4). The eigenproperties of an important class of buildings—-those
exhibiting geometric similarity among stories-—are easily synthesized from
the eigensolution for the associated single-story system. The algorithm for
the automatic earthquake analysis is currently being implemented on a micro-
computer (IBM-XT).

INTRODUCTION

We preserve in this development the same kind of notation used in the
presentation of the analytical model for the single-story system in the
companion paper (Ref. 1). Fig. 1 shows the projections on floor (i) of the
elastic systems of neighboring stories [(i-1), (i+1)], in addition to the
resisting lateral-torsional and axial systems of the story (i) itself.

The displacement response of the lateral-torsional system of the total
building is described by a 3N-component vector. The first N components
represent the first L-T principal rigidity coordinates of individual stories
grouped together in sequence. The following N components represent the second
L~T principal rigidity coordinates of individual stories grouped together in
sequence. The last N components represent the torsional principal rigidity
coordinates of individual stories grouped together in sequence, as well. The
displacement response of the axial system of the total building is described
by another 3N-component vector—--vertical tramslations and both rocking angles
of individual stories~-organized in a similar manner. The equations of motion
of the building are referred to those coordinates. Therefore, the principal
directions of inertia are determined for individual stories and the corre-
sponding mass properties are transformed accordingly.

Due to the nature of the basic analytical model for supporting elements,
the building L-T and axial systems behave independently for linear-elastic
earthquake response. Future extensions of the model into the nonlinear range
will introduce strong coupling between both systems during dynamic response,
as suggested previously (Ref. 1).

SYSTEM STIFFNESS MATRIX

Separating terms into the L-T and axial systems, the elastic forces
on floors referred to the principal rigidity coordinates are given by
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In general, the stiffness matrices [Kij] are tridiagonal. Fig. 2 shows

schematically the details of the construction of some terms of the building
stiffness matrix from first principles. Figs. 2a-2b refer to the L-T system
and Figs. 2c-2d refer to the axial system.
Notice in Fig. 2a, for example, that by imposing Dil) =1,

— only the building L-T story systems are affected,
— only the elastic systems of 2 stories are excited: (i) and (i+l),

i
LT

— rigidity system (i+l) is affected by displacements of CR£;+1),

— the equilibrium equations are formulated at CR(l—l), (1),
(i+1) M o

CRLT . Hence, external forces and reactions need to be trans@prmed

consistently to those reference systems.

— rigidity system (i) is affected by displacements of CR

CR and

Table 1 shows the components of the resulting system stiffness matrix.
SYSTEM MASS MATRIX

The companion paper (Ref. 1) presents the mass matrix of an individual
story referred to the principal rigidity coordinates. This superelement mass
matrix is used to assemble the system mass matrix. The assembly process of
the inert%a force vector leads to the construction of the following building
mass matrix:
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THE ELGENPROBLEM
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The system eigenproblem is broken down into its homogenized and normal-

ized components:
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Now, for the associated two-fold symmetric system (with superscript *):
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The idea is to solve approximately the eigenproblem (5) by using the
standard eigensolution yielded by (8)--classical shear-building eigenproblem.

The error matrix is easily computed (Ref. 4)
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L~ LL(NxN)]

X

B

Observing the form of the eigenvectors of (5) and applying perturbation
theory (Refs. 2 and 4), the corresponding eigens can be expressed as
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and, for the particular class of buildings exhibiting geometric similarity
among stories

o e l¢*
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This is the eigenproblem of the associated single-story building
(cf. Refs. 1 and 2). Solution of equation (12) produces N eigenvalues and
N eigenvectors {n}, complemented by equation (11d).

The same procedure applies for 2¢§K
sponding to the lateral-torsional system. Of course, in most cases only a few

first modes contribute significantly to the response.

and 6¢EK to generate 3N eigens corre-

A similar process is then applied to the axial system to complete the
building eigensolution (Ref. 5).

EARTHQUAKE ANALYSIS

The equations of motion of the building system during earthquake response
are given by
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If the eigenvectors are normalized in such a way that

m
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then, standard normal coordinate transformation (Ref. 3) leads to the
uncoupled equations
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To construct the vector of the effective earthquake forces, we use the
results for the single-story building model (Ref. 1) in conjunction with the
standard assembly process (Ref. 3):
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p
which are solved by the same numerical procedure outlined in the companion
paper (Ref. 1) for the single-story system. Once the normal coordinates
are obtained, the determination of the time-histories of displacement
response, of the effective earthquake forces, and, of element force response
follows straightforward by a process of backsubstitution (Ref. 3).

CONCLUSIONS

The extension of the ideas presented in the companion paper (Ref. 1)
for the earthquake analysis of single-story systems has been developed for
multistory building systems behaving in the linear-elastic range. Judging
from the efficiency of the resulting algorithm for single-story systems, great
economy is expected in the resulting capability for multistory buildings--in
particular, for structures exhibiting storywise geometric similarity.

The corresponding application program is presently being implemented
on a microcomputer (Compiler Basic). In general, the use of a fixed-disk
becomes necessary for the dynamic construction of the random-access time-
history datafiles corresponding to the several structural parameters being
investigated.
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