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SUMMARY

A typical base-isolated structure on rubber bearings is liable to have a small eccentricity and
closely spaced frequencies causing coupled lateral-torsional response. In seismic analysis, the structure
is modeled as a rigid deck with lumped masses supported on axially inextensible bearings. The Green’s
functions for displacement response are derived for undamped and damped cases with small and large
eccentricities. An interaction equation for normalized displacements is established for an idealized flat
velocity spectrum. Numerical results for a specific building are carried out for comparison.

It is shown that the effect of torsional coupling on the response of base-isolated structures sub-
jected to transient loadings is generally negligible due to the combined effects of the time lag between
the maximum translational and torsional responses and the influence of damping in the bearings.

INTRODUCTION

Base isolation is an aseismic structural design strategy in which a building is uncoupled from the
damaging horizontal components of an earthquake by a mechanism that attenuates the transmission of
horizontal acceleration into the structure. The concept of base isolation has become a practical possibil-
ity with the recent development of multilayer elastomeric bearings. An extensive literature survey on
the history of base isolation is given in Ref. 1, and the results of a series of experiments on this con-
cept carried out at the Earthquake Engineering Research Center, University of California, Berkeley,
have been published (Ref. 2-5). These results have established the effectiveness of this approach to
aseismic design. While base isolation has generally been proposed for new construction (Ref. 6,7), the
concept can be adapted to the rehabilitation of older buildings of architectural and historical merit. The
economic feasibility of rehabilitation by base isolation has been studied for a building in downtown San
Francisco (Ref. 8) from which physical parameters are taken for use in later analyses .

For an idealized base-isolated building, where bearings under columns are designed to carry
exactly the vertical load and to have precisely the desired lateral stiffness, the center of mass of the
superstructure will coincide with the center of rigidity of the bearings. In practice, however, this situa-
tion can rarely be achieved and there is generally an eccentricity. The dynamic response of such a
structure is more complex when the natural frequencies are closely spaced.

The effects of torsion in buildings appears to have first been studied by Ayre (Ref. 9) for shear
beam models. Recent studies of single and multiple story elastic systems through deterministic (Ref.
10) and probabilistic (Ref. 11) approaches have provided valuable insight into the general features of
torsional coupling. It has been concluded by many studies that a strong coupling between lateral and
torsional motions can occur if the corresponding frequencies are close together, even when the eccen-
tricity between the centers of mass and rigidity is small (Ref. 9-12).

In this analysis, a base-isolated structure is idealized as a rigid deck with tributary masses lumped
at column locations, Fig. 1. The rigid deck is supported on massless, axially inextensible bearings. The
three degrees of freedom of the system are the horizontal displacements, u, and u,, at the center of
mass of the system along the principle axes, x and y, of the structure and the rotation, 8, of the deck
about the vertical axis. However, the rotational displacement uz=r6, in which r is the radius of gyra-
tion of the deck, will be used in place of 6.

The dynamic response of this system to a horizontal ground motion along the x-axis is investi-
gated. Closed form solutions for the coupled lateral-torsional response of the system are presented
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first. They will be followed by an interaction equation for normalized displacements of the system
when an idealized flat velocity spectrum is used to characterize the ground motion.

It is shown in the analysis that coupling can be important, particularly in the estimation of the
maximum displacement at the corners of the building. However, it is also shown that the coupling
reduces the translational displacement at the center of mass. In addition, damping in the bearings has
the effect of absorbing these coupled lateral and torsional motions. Damping in elastomeric isolation
systems can be as high as 8% to 10% in the isolated modes and for these values torsional coupling is
negligible for transient inputs, such as earthquake motions.

EQUATIONS OF MOTION
Let k, and k,; be the translational stiffnesses of the ith bearing in the x and y directions and
k= k,=k;. The total translational stiffnesses of the bearings, K, = X, = Zk,-, are simply the sum of
individual bearing stiffness in the x or y direction. The total torsional stiffness of the isolation system
defined at the center of mass is given by K = Y k; (y?+x?) where x; and y; are the distances of the jth
bearing measured from the center of mass.
Three frequency parameters w,, @), and w, are defined as follows:
l. Iﬁ
Jak K, K )"
ox= |50 =5 =2 1
in which m is the total mass. These frequencies may be interpreted as the uncoupled frequencies of
the system. In general, the individual bearing stiffness k; will be selected to ensure that k;=mwf
where m; is the tributary mass on the ith bearing and wq is the design frequency for all the bearings. If
this holds exactly, all the frequencies will be equal and result in w,=w,=w,=w.
In this analysis, a Rayleigh damping equal to 2a times the stiffness matrix is assumed and the
equations of motion of the system can be written as
(i} + 2o [K1i) + [KNu) = (i) )

where {u}=(u,,ug,u,}7, {if}={ii,0,0}7 with ii,, being the ground motion along the x-axis, and
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in which e, and e, are the static eccentricities in the x and y directions, respectively. It should be noted
that [K] depends only upon the dimensionless parameters e,/r and el/r.
ANALYSIS PROCEDURE

The frequency equation for the system is given by [K]{¢,}=w2[l]{¢,}, in Which w, is the eigen-
value of the nth mode; {¢,} is the corresponding eigenvector; and [I] is the identity matrix. The
eigenvalues of the system take the form

w) = wg(l—%)v’ , Wy=wy, w3= wo(l+%)'/’ 4)

where- e2=ex2+ey2, with e being the eccentricity between the centers of mass and rigidity. The value of
g/ r will be small for an isolated building where the bearing stiffness is matched to the mass as men-
tioned earlier. The frequencies of the coupled response, therefore, can be approximated by

w; =wy(1-4), w;=wy, w;=wy(1+A) (5)

where'A=e/2r is the shift of frequencies of the coupled system from the uncoupled system. In this
analysis, Eq. (5) will be used instead of Eq. (4) for frequencies of the system. To the same order of
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approximation, O(4), the orthonormal eigenvectors of the system are given by
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Damped Case

; The damped displacement responses of the first order approximation, O(A), for the system take
the form

2
—l f —awz =) e N 3
u, = __fe ol )ugx(f)smwo(t—r)[l—[il [l—cosmoA(r-—r)]}dr (7a)
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Undamped Case
The undamped displacement responses of the same order of approximation take the form
. 2
-1 r.. . e,
U, = —wlfugx(f)smmo(t—'r)[l—[—i) [1—-c05woA(t—f)]}df (8a)
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It is clear from Eqgs. (7a) and (8a) that the response in the x direction, u,, of the coupled system
can never be greater than the corresponding response in the uncoupled system. The torsional response,
uy, increases as e, increases. However, for two-way torsionally coupled systems (e, 70 and e,#0) the
eccentricity in the direction of the ground motion reduces the maximum torsional response. This is
consistent with a result obtained in a recent study (Ref. 11). The response in the y-direction, u,, van-
ishes when either e, or e, vanishes.

Green'’s Functions of Undamped Case

For undamped two-way torsionally coupled systems with equal eccentricities, é,=e,, the responses
can be demonstrated as follows:

u, = 2_: | iy, (T)sinwg(1—7) -—COSmoA(t-—r)]d-r = jo. i (1) Gy (t,7) dr (9a)
1 [ . f..
Uy = \—/_-2—;0—{ llg (T)coswo(1—T)sinweA (1—7) dr = {ugx(r) Gy(t,7) dr (9p)
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in which G,(t,7),G,(1,7), and Gs(t,7) are the Green’s functions with the slowly oscillating envelopes
(1—coswgA 1), sinweAt, and (14+coswoA 1) for u,, up, and u,, respectively.

The Green’s functions of Eq. (9) for a particular case where A=0.01 and wo=7, which may be
considered representative of a base-isolated structure, are shown in Figs. 2 and 3. These plots demon-
strate the Green'’s functions of the undamped response of the system for one half the period of the
envelope functions. The time lag between the maximum translational and torsional responses is clearly
shown for the soft systemn with small eccentricity. The torsional coupling effects for such systems are
negligible when a short duration transient input is involved. Figure 4 shows the response of a corner
point located at a distance a away from the center of mass, Fig. 1. The corner point experiences a
response of U=u,+uya/r, for which a/r is taken as 1.5 in this example.

Figure 4 reveals the importance of damping in the response of a base-isolated structure. The
maximum displacement at corners could exceed the maximum displacement at the center of mass due
to the buildup of the torsional response in an undamped system. This could result in impact against
adjacent structures if sufficient clearance is not provided.

Green’s Functions of Damped Case

For damped two-way torsionally coupled systems with equal eccentricities, e,=e,, and a constant
damping ratio, £=awy=0.05, the displacement responses take the form

lly =

Uy

L 1
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where G,(t,7), Gs(1,7), and Gs(t,7) are the Green’s functions with the slowly oscillating envelopes.
The Green’s function of these responses for the particular case where A=0.01 and wo=7 are shown in
Figs. 5 and 6 and the corner motion, U=u,+uga/r with a/r=1.5, is shown in Fig. 7.

The torsional response, uy, Fig. 6, can not build up to significant values because of the exponen-
tially decaying effect of the damping. The influence of the damping during the time lag between the
maximum lateral and torsional responses causes the torsional coupling to become negligible for the sys-
tem with small eccentricity. This is clearly demonstrated in the response of the corner point, Fig. 7,
which has virtually the same response as the center of mass, Fig. 5. The results indicate that for typical
base-isolated systems with small eccentricity and 5% equivalent viscous damping, the torsional coupling
effects are negligible.

Large Eccentricity

An artificial eccentricity equal to 5% of the maximum plane dimension, a typical value required by
various seismic codes, is considered as the large eccentricity in this analysis. Increasing the eccentricity
on this order will reduce the time necessary for the torsional response to build up and, as a result, the
effects of torsional coupling will increase. However, the maximum displacements at the corner point
and the center of mass are not noticeably different (Ref. 13).

INTERACTION EQUATION

For the purpose of design, it is more appropriate to characterize the expected ground motion by a
response spectrum. An idealized flat velocity spectrum will be used in formulating an interaction equa-
tion for normalized displacements. For a typical isolated building, fundamental period around 2 sec,
design spectra will generally approximate the idealized spectrum.
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An e§timation of the maximum of a response quantity R may be obtained by combining the
rlr;c;dal maxima R, R,, and R; according to the Complete Quadratic Combination (CQC) method (Ref.

'Rz = 2p0,nmRan n.m= 11213 an

in which the cross-correlation coefficients are given by

2(¢ € ) lw +w ) (€, +E )+ (w2-wl) (£,~£,)]
4(w,,-m,,,)2+(w,,+w,,,)z(§,,+§,,,)2

where £, and £,, are modal dampings for modes n and m, respectively. The cross-correlation terms

can be important under certain conditions, in particular when the natural frequencies of the structure

are closely spaced. As this is often the case for buildings on a rubber isolation system, these terms are
included in this analysis.

The modal response quantities u,,, ug,, and u,, can be expressed in their normalized forms:

PO,nm = 12)

— Usn - Ugn — Uy
Uen= U s Ugn= u y W= u n=123 (13)
x0 x0

where ug=3S;(wg,£)=S, (wg,€)/wg in which S, and S, are the spectral displacement and velocity of the
uncoupled system , respectively.

For a flat velocity spectrum in the x-direction, Eq. (13) can be written as

(O] (0]

Uy = g ¢3n s aﬂn =2 DenPon s Uy = ﬂ‘ﬁx byn (14)
wn wﬂ 4 wn Y

By substituting Eq. (14) into Eq. (11) as well as making use of the orthonormal properties of the eigen-

vectors, the estimated maximum responses %, %, and %, can be shown to satisfy the following

interaction equation:
W +ui=1+8=1 s)

in which 8=(e,/r)?/[1—(e/r)?]. The approximations made in Eq. (15) are consistent with those in the
derivation of the equations of motion. The result is similar to that obtained in a previous study on
elastic forces in torsionally coupled systems (Ref. 10).

For systems with small eccentricity, it is obvious from the interaction equation, Eq. (15), that u,
of the torsionally coupled system is not greater than u., the displacement of the torsionally uncoupled
system. This is consistent with the observation made for Egs. (7a) and (8a) of u,.

NUMERICAL EXAMPLE

In order to illustrate these analytical results, the previously mentioned building on an isolation
system is analyzed. The system has a fundamental frequency of wg=m and the equivalent viscous
damping is estimated to be 5% in the isolated modes. The El Centro earthquake record of May 18,
1940 and its corresponding response spectra are used as the input motion. Both the time history
method and the response spectrum method using the modal superposition technique are implemented.
For the small eccentricity case, the value of A is 0.01 and a/r is 1.5 for the corner point.

The results of the time history method are presented in Figs. 8 to 10. It can be seen that for
A=0.01, the motion of the corner point, Fig. 10, is virtually the same as the motion at the center of
mass, Fig. 8, and the torsional response is insignificant. It should, however, be noted that the 5%
damping used is a conservative value, since elastomeric bearings can have an equivalent viscous damp-
ing ratio of up to 10%.

The results of the response spectrum method, along with the peak responses of the time history
analysis, are presented in Table 1. The superiority of the CQC method over the conventional SRSS
method is apparent. The SRSS method underestimates the corner motion and the response in the
direction of the input motion, and overestimates the out-of-plane response. Hence, it is recommended
that the CQC method be used in the response spectrum analysis for base-isolated buildings which are
typically soft systems with small eccentricity and closely spaced frequencies.
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CONCLUSIONS

As a result of this study the following conclusions can be drawn for a horizont_al grounq motion
input in the x direction. They are confirmed by some general results obtained in previous studies using
both deterministic and probabilistic approaches (Ref. 10,11).

1)  Coupling induces the torsional response and reduces the translational response at the center of
mass of the structure..

2) For two-way torsionally coupled systems where e, #0 and e,70, the torsional response, u,,
depends upon e,/e, and the eccentricity in the direction of the ground motion, e,, reduces the
peak torsional response.

3)  For one-way torsionally coupled systems where e,=0 or e,=0, the displacement response perpen-
dicular to the direction of the ground motion, u,, vanishes.

4) For a base-isolated structure with small eccentricity, the torsional coupling effect on the displace-
ment response to transient loadings is negligible, due to both the time lag between the maximum
lateral and torsional responses in the soft system and the influence of damping in the isolation
system.

5) The displacements in a torsionally coupled system can be related to the displacements of the
corresponding uncoupled system through an interaction equation when a flat velocity spectrum is
used to characterize the ground motion. For the typical period range of isolated structures, ie. 2.0
sec., many spectra, e.g. ATC-3-06, have this characteristic.

It is essential to obtain a reliable estimate of the maximum displacement response at the corner
points of a base-isolated building. If sufficient clearance is not provided, impact against the adjacent
structures may result. Because an isolated structure will inevitably have closely spaced frequencies, the
CQC method should be used in the response spectrum analysis.
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Table 1

Results of Time History and Response Spectrum Analysis; Unit: ¢m (in)

Small Eccentricity (A =0.01)"
Response | Time History CQC SRSS
Uy, 17.78 (7.00) | 17.58 (6.92) | 10.82 (4.26)
Uy 1.52 (0.60) 1.78 (0.70) 8.83 (3.48)
U, 0.15 (0.06) 0.20 (0.08) | 10.82 (4.26)
ﬁ 18.29 (7.20) | 18.26 (7.19) | 17.37 (6.84)
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